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Several models of type theory given as categories with families (CwFs), including the set the-
oretic model and the presheaf model, implicitly assume uniqueness of identity proofs (UIP) in
order to precisely fit the definition of a CwF. Our goal is to construct such a model using con-
tainers, while working in Martin-Löf type theory without assuming UIP. In their abstract [5],
Altenkirch and Kaposi propose a container model of type theory as a CwF, which however raises
some coherence issues in the absence of UIP that need to be addressed in order to complete the
model. In this talk, we present ongoing work addressing these issues.

Motivation The theory of containers (a.k.a. polynomial functors) has proved very useful in
providing semantics for inductive types and inductive families [1, 4]. Our goal is to extend
this theory to provide semantics for more general classes of inductive types that are less well
understood, specifically inductive-inductive types (IITs) and quotient inductive-inductive types
(QIITs). Constructing this model is a prerequisite to this approach. In our proposed (Q)IIT
semantics [3, 2], a data type constructor is represented by a pair of functors which have to be
expressable as container functors. Therefore, we need a general way to express any type context
as a container. This can be achieved by constructing a container model of type theory.

The container model We briefly outline the container model using CwFs as our notion of a
model of type theory, ignoring coherence issues for now. This model can be seen as a restriction
of the presheaf model, where we only consider endofunctors on Set that are container functors.

• The base category is the category of set-containers Cont. The objects, corresponding to
contexts, are set-containers, i.e. pairs SΓ : Set, PΓ : SΓ → Set1 written as SΓ ◁ PΓ, and mor-
phisms σ : SΓ ◁ PΓ → S∆ ◁ P∆, corresponding to substitutions, are container morphisms,
i.e. pairs σs : SΓ → S∆, σp : (s : SΓ) → P∆ (σs s) → PΓ s. The terminal object, correspond-
ing to the empty context, is 1 ◁ 0. Every container SΓ ◁ PΓ gives rise to an endofunctorJSΓ ◁ PΓK : Set → Set, defined on objects by JSΓ ◁ PΓKX :=

∑
(s : SΓ)(PΓ s → X), and

every container morphism gives rise to a natural transformation between such endofunctors.

• A type over context Γ is given by a generalised container A, i.e. a pair SA : Set,
PA : SA → |

∫ JΓK|, which gives rise to a functor JSA ◁ PAK : ∫ JΓK → Set, defined on
objects by JSA ◁ PAK γ :=

∑
(s : SA)(

∫ JΓK(PA s, γ)).2 Given A and σ : ∆ → Γ, type sub-

1Set refers to the universe of h-sets.
2|∫JΓK| denotes the type of objects of the category of elements of JΓK. PA has the following components:

PX
A : SA → Set, P s

A : SA → SΓ, P f
A : (s : SA) → PΓ(P

s
A s) → PX

A s.
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stitution A[σ] is a generalised container SA[σ] ◁ PA[σ] over
∫ J∆K, defined using pullback and

pushout respectively as follows. In the rightmost diagram, assume s : SA[σ], and that we can
transport along the equation given by the leftmost diagram.

SA[σ] SA

S∆ SΓ

snd

⌟
fst P s

A

σs

PΓ(σs(fst s)) PX
A (snd s)

P∆(fst s) PX
A[σ] s

P f
A(snd s)

σp(fst s) inr

inl
⌜

The P s
A[σ] and P f

A[σ] components of PA[σ] are then defined as fst and inl respectively.

• A term of type A in context Γ is given by a ‘dependent natural transformation’ a from JΓK
to JAK, which we denote as a :

∫
X:Set(γ : JΓKX) → JAK(X, γ). Given a and σ : ∆ → Γ, term

substitution a[σ] is roughly the natural transformation a ◦ JσK.
• Given context Γ and type A over Γ, the extended context Γ.A is defined as the set-container

SA ◁ PX
A .

Coherence issues One coherence issue arising in the proposed model is that we have a groupoid
of types (and also of contexts), whereas the definition of a CwF requires this to be an h-set.
This being a groupoid means that the functor laws of the functor Ty interpreting types, namely
the laws A[id] = A and A[δ◦σ] = A[δ][σ], hold up to higher equalities, which would also need to
be checked. Another coherence issue is that in our model, these same functor laws do not hold
strictly but only up to isomorphism, due to our definition of type substitution using pullback
and pushout, which are only unique up to isomorphism.

There are two alternative ways we can solve these issues. One way is to generalise the definition
of a CwF so that types (and contexts) can be groupoids (or higher types), a so-called ‘higher’ or
‘coherent’ CwF. This would require interpreting the syntax of type theory, which is the initial
set-CwF, as a higher CwF. More specifically, we would need to prove that the initial coherent
CwF is a set-CwF. Another way is to strictify our proposed model so that it fits the regular
definition of a CwF. We are currently taking the latter approach. The first coherence issue can
be tackled by using an inductive-recursive universe U : Set,El : U → Set, such that the elements
of U are codes for our actual types, which are decoded by El. The second coherence issue can
be tackled by redefining the functor Ty in a coherent way by accumulating compositions. We
define Ty’ Γ :=

∑
(σ : Γ → ∆)(Ty ∆) for some context ∆, which satisfies the required functor

laws strictly.

Future work This model is a starting point for our actual application of (Q)IIT semantics,
which requires the model to be constructed with respect to a fixed category of algebras. This
means that the base category needs to be the category of generalised containers instead of
set-containers. We aim to construct this generalised model in the future.
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