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Quotient inductive types
QIITs = < Inductive-inductive types A : Type
B:A— Type

Example

data Con : Set
data Ty : Con -+ Set

data Con where
¢ @ Con
-+ (' : Con) (A : Ty ) = Con
eq : (' : Con) (A : Tyl (B : Ty (', A)) ~
(aTr,AaA ,B =a, T AB)

data Ty where
t: (I : Con) = Ty I
Y : (I : Con) (A:Ty D) Ty (I, A) »Ty Tl



Specifications of inductive types

Class of types Functor type Category theory Type theoretic Universal
semantics normal form type
ordinary inductive Set — Set initial algebras of containers W-type
types endofunctors on
e.g. N: Set Set
inductive families (I — Set) — (I — Set) initial algebras of  indexed containers WI-type

e.g. Fin: N — Set

endofuntors on
Set/



Specifications of inductive types

Class of types Functor type Category theory Type theoretic Universal
semantics normal form type
ordinary inductive Set — Set initial algebras of containers W-type
types endofunctors on
e.g. N: Set Set
inductive families (I — Set) — (I — Set) initial algebras of  indexed containers WI-type
e.g Fin: N — Set endofunt(l)rs on
Set
QlTs ? ? ? ?
e.g. Con : Set,
Ty : Con — Set



Specifications of inductive types

Class of types Functor type Category theory Type theoretic Universal
semantics normal form type
ordinary inductive Set — Set initial algebras of containers W-type
types endofunctors on
e.g. N: Set Set
inductive families (I — Set) — (I — Set) initial algebras of  indexed containers WI-type
e.g Fin: N — Set endofunt(l)rs on
Set
QlTs seemingly impossible, ? ? ?
e.g. Con : Set but we have an
Ty : Con — Set alternative
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Representing QIITs [Altenkirch et al., 2018]

© Category Ag of sorts.
@ Constructor specification. The nth constructor is specified by
two functors
L,: A, — Set,
Rn: [ L, — Set.
© Category of algebras. A,y1 is the category having
o objects of type > (A : |An])(c: (x: Ly A) = Ru(A, x))

o morphisms (A, c) — (A, ¢’) are morphisms f: A — A’ in A,
such that

(x: Ly A) =255 (Lyf)x @ Ly A)

| I

Ro(A,X) —— Ry(A', (Ly ) x)

where f is the morphism in [ L, determined by f.



Specifications of inductive types (revisited)

Class of types Functor type Category theory Type theoretic Universal
semantics normal form type
ordinary inductive Set — Set initial algebras of containers W-type
types endofunctors on
e.g. N: Set Set
inductive families (1 — Set) — (I — Set) initial algebras of  indexed containers WI-type
e.g. Fin: N — Set endofuntzl)rs on
Set
QllTs seemingly impossible, ? ? ?
e.g. Con : Set, but we have an
alternative

Ty : Con — Set



Specifications of inductive types (revisited)

Class of types Representation Category theory Type theoretic Universal
semantics normal form type
ordinary inductive functor initial algebras of containers W-type
types Set — Set endofunctors on
eg. N:Set Set
inductive families functor initial algebras of  indexed containers WI-type
e.g Fin:N — Set (1 — Set) — (1 — Set) endofuntors on
Set/
QlITs sequence of functors L, initial object in ? ?
e.g. Con : Set and R, and sequence of last constructed

Ty : Con — Set

categories of dialgebras

category of
dialgebras A,
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Specifications of inductive types (revisited)

Class of types Representation Category theory Type theoretic Universal
semantics normal form type
ordinary inductive functor initial algebras of containers W-type
types Set — Set endofunctors on
e.g. N:Set Set
inductive families functor initial algebras of  indexed containers WI-type
e.g Fin:N — Set (I — Set) — (1 — Set) endofuntors on
Set/
QllTs sequence of functors L, initial object in representations QW-type
e.g. Con : Set and R, and sequence of last constructed constructed via

Ty : Con — Set

categories of dialgebras

category of
dialgebras A,

generalised
containers
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Generalised containers

We require L,: A, — Set and R,: [ L, — Set to be generalised
container functors (+ other restrictions on R,).



Generalised containers

We require L,: A, — Set and R,: [ L, — Set to be generalised
container functors (+ other restrictions on R,).

Definition
A generalised container S < P over a category C is a pair S : Set
and P: S — |C|.

Definition
The generalised container extension functor associated to S < P
and having type C — Set, is defined by

[SaP]X =) (s:S)(C(Ps, X))

on objects X : |C].
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Conclusion

@ QIITs combine set-truncated equalities with
induction-induction.

@ We can represent QIITs semantically as initial dialgebras.

o Conjecture: The categories of dialgebras having an initial
object are those whose constructors are restricted to
generalised container functors.

@ Question: What does a universal QW-type look like?
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induction-induction.

@ We can represent QIITs semantically as initial dialgebras.

o Conjecture: The categories of dialgebras having an initial
object are those whose constructors are restricted to
generalised container functors.

@ Question: What does a universal QW-type look like?

Thank you!



References

@ Altenkirch, T., Capriotti, P., Dijkstra, G., Kraus, N., and
Nordvall Forsberg, F. (2018).
Quotient inductive-inductive types.
In Baier, C. and Dal Lago, U., editors, FOSSACS, pages
293-310. Springer.

[4 Altenkirch, T. and Kaposi, A. (2021).
A container model of type theory.
In TYPES 2021.

[d Fiore, M. P., Pitts, A. M., and Steenkamp, S. (2021).
Quotients, inductive types, and quotient inductive types.
Log. Methods Comput. Sci., 18.

[§ Kaposi, A., Kovécs, A., and Altenkirch, T. (2019).
Constructing quotient inductive-inductive types.
Proc. ACM Program. Lang., 3(POPL).



