Specifying QIITs using Containers

Stefania Damato Thorsten Altenkirch

University of Nottingham, UK

Workshop on Homotopy Type Theory/Univalent Foundations

23rd April 2023

Quotient inductive-inductive types (QIITs)

$$\mathsf{QIITs} = \left\{ \begin{aligned} \mathsf{Quotient} \ \mathsf{inductive} \ \mathsf{types} \\ \end{aligned} \right.$$

Quotient inductive-inductive types (QIITs)

$$\mathsf{QIITs} = \begin{cases} \mathsf{Quotient} \ \mathsf{inductive} \ \mathsf{types} \\ \mathsf{Inductive}\text{-inductive} \ \mathsf{types} \end{cases} \quad \begin{array}{l} A : \mathsf{Type} \\ B : A \to \mathsf{Type} \end{array}$$

Quotient inductive-inductive types (QIITs)

```
\mathsf{QIITs} = \begin{cases} \mathsf{Quotient} \ \mathsf{inductive} \ \mathsf{types} \\ \mathsf{Inductive}\text{-inductive} \ \mathsf{types} \end{cases} \quad \begin{array}{l} \textit{A} : \mathsf{Type} \\ \textit{B} : \textit{A} \to \mathsf{Type} \end{array}
```

Example

```
data Con : Set
data Ty : Con → Set
data Con where
    ♦ : Con
    \_,\_: (\Gamma : Con) (A : Ty \Gamma) \rightarrow Con
    eq : (\Gamma : Con) (A : Ty \Gamma) (B : Ty (\Gamma , A)) \rightarrow
             ((\Gamma, A), B) \equiv (\Gamma, \Sigma \Gamma A B)
data Ty where
    \iota : (\Gamma : Con) \rightarrow Ty \Gamma
    \Sigma : (\Gamma : Con) (\Lambda : Ty \Gamma) \rightarrow Ty (\Gamma , \Lambda) \rightarrow Ty \Gamma
```

Specifications of inductive types

Class of types	Functor type	Category theory semantics	Type theoretic normal form	Universal type
ordinary inductive types e.g. \mathbb{N} : Set	$\textbf{Set} \rightarrow \textbf{Set}$	initial algebras of endofunctors on Set	containers	W-type
inductive families e.g. Fin : $\mathbb{N} \to Set$	$(\textbf{I} \rightarrow \textbf{Set}) \rightarrow (\textbf{I} \rightarrow \textbf{Set})$	initial algebras of endofuntors on Set ¹	indexed containers	WI-type

Specifications of inductive types

Class of types	Functor type	Category theory semantics	Type theoretic normal form	Universal type
ordinary inductive types $ \text{e.g. } \mathbb{N}: Set $	$\textbf{Set} \rightarrow \textbf{Set}$	initial algebras of endofunctors on Set	containers	W-type
inductive families e.g. Fin : $\mathbb{N} \to Set$	$(\textbf{I} \rightarrow \textbf{Set}) \rightarrow (\textbf{I} \rightarrow \textbf{Set})$	initial algebras of endofuntors on Set ¹	indexed containers	WI-type
QIITs e.g. Con : Set, Ty : Con \rightarrow Set	?	?	?	?

Specifications of inductive types

Class of types	Functor type	Category theory semantics	Type theoretic normal form	Universal type
ordinary inductive types e.g. \mathbb{N} : Set	$\textbf{Set} \rightarrow \textbf{Set}$	initial algebras of endofunctors on Set	containers	W-type
inductive families e.g. $\mathtt{Fin}:\mathbb{N}\toSet$	$(\textbf{I} \rightarrow \textbf{Set}) \rightarrow (\textbf{I} \rightarrow \textbf{Set})$	initial algebras of endofuntors on Set [/]	indexed containers	WI-type
QIITs e.g. Con : Set, Ty : Con $ ightarrow$ Set	seemingly impossible, but we have an alternative	?	?	?

Representing QIITs [Altenkirch et al., 2018]

lacktriangle Category lacktriangle of sorts.

Representing QIITs [Altenkirch et al., 2018]

- lacktriangle Category A_0 of sorts.
- **②** Constructor specification. The n^{th} constructor is specified by two functors

$$L_n: \mathbf{A_n} \to \mathbf{Set},$$

 $R_n: \int L_n \to \mathbf{Set}.$

Representing QIITs [Altenkirch et al., 2018]

- lacktriangle Category A_0 of sorts.
- **②** Constructor specification. The n^{th} constructor is specified by two functors

$$L_n: \mathbf{A_n} \to \mathbf{Set},$$

 $R_n: \int L_n \to \mathbf{Set}.$

- \odot Category of algebras. A_{n+1} is the category having
 - objects of type $\sum (A: |\mathbf{A}_n|)(c: (x: L_n A) \to R_n(A, x))$
 - morphisms $(A, \overline{c}) \to (A', c')$ are morphisms $f: A \to A'$ in $\mathbf{A_n}$ such that

$$(x: L_n A) \xrightarrow{L_n f} ((L_n f) x: L_n A')$$

$$\downarrow c \qquad \qquad \downarrow c'$$

$$R_n(A, x) \xrightarrow{R_n \bar{f}} R_n(A', (L_n f) x)$$

where \bar{f} is the morphism in $\int L_n$ determined by f.

Specifications of inductive types (revisited)

Class of types	Functor type	Category theory semantics	Type theoretic normal form	Universal type
ordinary inductive types e.g. \mathbb{N} : Set	$\textbf{Set} \rightarrow \textbf{Set}$	initial algebras of endofunctors on Set	containers	W-type
inductive families e.g. $\mathtt{Fin}:\mathbb{N}\toSet$	$(\textbf{I} \rightarrow \textbf{Set}) \rightarrow (\textbf{I} \rightarrow \textbf{Set})$	initial algebras of endofuntors on Set ¹	indexed containers	WI-type
QIITs e.g. Con : Set, Ty : Con $ ightarrow$ Set	seemingly impossible, but we have an alternative	?	?	?

Specifications of inductive types (revisited)

Class of types	Representation	Category theory semantics	Type theoretic normal form	Universal type
ordinary inductive types e.g. \mathbb{N} : Set	$\begin{array}{c} functor \\ \mathbf{Set} \to \mathbf{Set} \end{array}$	initial algebras of endofunctors on Set	containers	W-type
inductive families e.g. $\mathtt{Fin}:\mathbb{N}\toSet$		initial algebras of endofuntors on Set ¹	indexed containers	WI-type
QIITs $\begin{array}{l} \text{e.g. Con}: Set, \\ Ty: Con \to Set \end{array}$	sequence of functors L_n and R_n and sequence of categories of dialgebras	initial object in last constructed category of dialgebras A _n	?	?

Specifications of inductive types (revisited)

Class of types	Representation	Category theory semantics	Type theoretic normal form	Universal type
ordinary inductive types e.g. \mathbb{N} : Set	$\begin{array}{c} functor \\ \mathbf{Set} \to \mathbf{Set} \end{array}$	initial algebras of endofunctors on Set	containers	W-type
inductive families e.g. $\mathtt{Fin}:\mathbb{N}\toSet$	$ (\textbf{I} \rightarrow \textbf{Set}) \rightarrow (\textbf{I} \rightarrow \textbf{Set}) $	initial algebras of endofuntors on Set ¹	indexed containers	WI-type
QIITs $\begin{array}{l} \text{e.g. Con}: Set, \\ Ty: Con \to Set \end{array}$	sequence of functors L_n and R_n and sequence of categories of dialgebras	initial object in last constructed category of dialgebras A _n	representations constructed via generalised containers	QW-type

Generalised containers

We require $L_n: \mathbf{A_n} \to \mathbf{Set}$ and $R_n: \int L_n \to \mathbf{Set}$ to be **generalised container functors** (+ other restrictions on R_n).

Generalised containers

We require $L_n : \mathbf{A_n} \to \mathbf{Set}$ and $R_n : \int L_n \to \mathbf{Set}$ to be **generalised container functors** (+ other restrictions on R_n).

Definition

A generalised container $S \triangleleft P$ over a category \mathbf{C} is a pair S: Set and $P: S \rightarrow |\mathbf{C}|$.

Definition

The generalised container extension functor associated to $S \triangleleft P$ and having type $\mathbf{C} \rightarrow \mathbf{Set}$, is defined by

$$\llbracket S \triangleleft P \rrbracket X := \sum (s : S)(\mathbf{C}(P s, X))$$

on objects $X : |\mathbf{C}|$.

Illustration

$$F_0 \left(\begin{array}{c} \mathbf{A_0} \\ \mathbf{A_1} \end{array} \right) U_0$$

:

$$\begin{array}{c} \textbf{A}_{n-1} \\ \textbf{F}_{n-1} \left(\begin{array}{c} \\ \end{array} \right) \textbf{U}_{n-1} \\ \textbf{A}_{n} \end{array}$$

Illustration

Conclusion

- QIITs combine set-truncated equalities with induction-induction.
- We can represent QIITs semantically as initial dialgebras.
- Conjecture: The categories of dialgebras having an initial object are those whose constructors are restricted to generalised container functors.
- Question: What does a universal QW-type look like?

Conclusion

- QIITs combine set-truncated equalities with induction-induction.
- We can represent QIITs semantically as initial dialgebras.
- Conjecture: The categories of dialgebras having an initial object are those whose constructors are restricted to generalised container functors.
- Question: What does a universal QW-type look like?

Thank you!

References

- Altenkirch, T., Capriotti, P., Dijkstra, G., Kraus, N., and Nordvall Forsberg, F. (2018).

 Quotient inductive-inductive types.
 In Baier, C. and Dal Lago, U., editors, *FoSSACS*, pages 293–310. Springer.
- Altenkirch, T. and Kaposi, A. (2021). A container model of type theory. In *TYPES 2021*.
- Fiore, M. P., Pitts, A. M., and Steenkamp, S. (2021). Quotients, inductive types, and quotient inductive types. *Log. Methods Comput. Sci.*, 18.
- Kaposi, A., Kovács, A., and Altenkirch, T. (2019). Constructing quotient inductive-inductive types. *Proc. ACM Program. Lang.*, 3(POPL).

