Formalising Inductive & Coinductive Containers

Stefania Damato, Thorsten Altenkirch, Axel Ljungström

ITP '25 1st October 2025

Once upon a time...

Available online at www.sciencedirect.com

Theoretical Computer Science

Theoretical Computer Science 342 (2005) 3-27

www.elsevier.com/locate/tcs

Containers: Constructing strictly positive types

Michael Abbott^a, Thorsten Altenkirch^{b,*}, Neil Ghani^c

^a Diamond Light Source, Rutherford Appleton Laboratory, UK

^b School of Computer Science and Information Technology, Nottingham University, UK

^c Department of Mathematics and Computer Science, University of Leicester, UK

Abstract

We introduce the notion of a Martin-Löf category—a locally cartesian closed category with disjoint coproducts and initial algebras of container functors (the categorical analogue of W-types)—and then establish that nested strictly positive inductive and coinductive types, which we call strictly positive types, exist in any Martin-Löf category.

Central to our development are the notions of *containers* and *container functors*. These provide a new conceptual analysis of data structures and polymorphic functions by exploiting dependent type theory as a convenient way to define constructions in Martin-Lôf categories. We also show that morphisms between containers can be full and faithfully interpreted as polymorphic functions (i.e. natural transformations) and that, in the presence of W-types, all strictly positive types (including nested inductive and coinductive types) give rise to containers.

© 2005 Elsevier B. V. All rights reserved.

Keywords: Type theory; Category theory; Container functors; W-Types; Induction; Coinduction; Initial algebras; Final coalgebras

2. Background

2.1. The categorical semantics of dependent types

This paper can be read in two ways (see Proposition 2.5):

- (1) as a construction within the extensional type theory MLW^{ext} (see [8]) with finite types, W-types, a proof of true ≠ false and no universes;
- (2) as a construction in the internal language of locally cartesian closed categories with disjoint coproducts and initial algebras of container functors in one variable—we call these **Martin-Löf categories**.

Once upon a time...

Proposition 5.3. Given a container
$$F \equiv (S \triangleright P, Q) \in \mathcal{G}_{I+1}$$
 then $[\![W_SQ \triangleright Pos_{P,sup^{\mu}}]\!]X \cong \mu Y. [\![F]\!](X,Y);$ writing $\mu F \equiv (W_SQ \triangleright Pos_{P,sup^{\mu}})$ we can conclude that $[\![\mu F]\!] \cong \mu [\![F[-]]\!].$

Proposition 5.4. Given a container $F \equiv (S \triangleright P, Q) \in \mathcal{G}_{I+1}$ then

$$\left[\mathsf{M}_S Q \; \rhd \; \mathsf{Pos}_{P,\mathsf{sup}^{\nu}} \right] X \cong \nu Y. \; \llbracket F \rrbracket(X,Y);$$

writing $vF \equiv (M_S Q \triangleright Pos_{P, sup^v})$ we have $\llbracket vF \rrbracket \cong v \llbracket F[-] \rrbracket$.

I should formalise!

The punch line

· We formalised 'container functors preserve initial algebras & terminal coalgebras' in Cubical Agola.

· We improved the original result:

•	original	new
type theory	extensional	intensional
homotopy level	h-set	any 2
	decidable	containers

3

Background: Containers (a.k.a. polynomial functors)

A container is given by a pair S: Set, P: S → Set, written S & P.

Background: Containers (a.k.a. polynomial functors)

A container is given by a pair S: Set,
P: S → Set, written S & P.

Containers have a functorial interpretation. The container functor [S4P]: Set > Set is defined as:

$$[S \triangleleft P]X := \sum_{s:s} (Ps \rightarrow X)$$

Background: Containers (a.k.a. polynomial functors)

Containers have a functorial interpretation.

The container functor [S4P]: Set > Set is defined as: $[S \triangleleft P]X := \sum_{s:S} (Ps \rightarrow X)$

Type = wild cost.
of types

Background: I-ary containers

An I-ary container is given by a pair S: Type, P: I→S→Type, written S 4 P. I

Type × Type ×··· The I-ary container functor [S&PI: Type -> Type is defined as: $[S \triangleleft P]X := \sum_{s:S} \left(\prod_{i:I} Pis \rightarrow Xi \right)$

Example: Lists

E.g.
$$F_{List}: Set^2 \rightarrow Set$$

$$(A, X) \mapsto 1 + (A \times X)$$

$$\cong S, P, Q \text{ such that}$$

$$\cong Z (Ps \rightarrow A) \times (Qs \rightarrow X)$$

$$S:S \Rightarrow A \times (Qs \rightarrow X)$$

$$F_{List}(A, X) \cong [S \triangleleft (P, Q)](A, X)$$
And, $\mu X. F_{List}(A, X) \cong [N \triangleleft Fin]A$

$$\mu \text{ closure}$$

 γX . $F_{List}(A,X) \cong \mathbb{L} N \otimes A Cofin \mathbb{J} A Y closure$

Coinductive types

Induction

```
data \mathbb{N}: Type where zero : \mathbb{N} succ : \mathbb{N} \to \mathbb{N} constructors
```

```
\begin{array}{l} \mathsf{isEven}: \ \mathbb{N} \to \mathsf{Type} \\ \mathsf{isEven} \ \mathsf{zero} = \top \\ \mathsf{isEven} \ (\mathsf{suc} \ \mathsf{zero}) = \bot \\ \mathsf{isEven} \ (\mathsf{suc} \ (\mathsf{suc} \ n)) = \mathsf{isEven} \ n \end{array}
```

Coinductive types

Induction

```
data \mathbb{N}: Type where
```

zero : \mathbb{N} succ : $\mathbb{N} \to \mathbb{N}$ constructors

```
isEven : \mathbb{N} \to \mathsf{Type}
isEven zero = \top
isEven (suc zero) = \bot
isEven (suc (suc n)) = isEven n
```

pattern matching

Coinduction

```
record Stream (A : \mathsf{Type}) : \mathsf{Type} where
  coinductive
  field
                       { destructors
```

```
from : \mathbb{N} \to \mathsf{Stream} \ \mathbb{N}
\mathsf{hd} \; (\mathsf{from} \; n) = n
\mathsf{tl}\ (\mathsf{from}\ n) = \mathsf{from}\ (\mathsf{suc}\ n)
```

matching

Coinduction in Agola

- In vanilla Agda (without postulates):
- copattern matchingguarded corecursion
- x not enough extensionality e.g. no function extension ality

Coinduction in Agola

- In vanilla Agda (without postulates):
- copattern matchingguarded corecursion
- × not enough extensionality e.g. no function extension ality

In Cubical Agda, fun Ext is provable.

This facilitates $f(x:A) \to f(x=a|x)$ coinductive reasoning.

 $\mathsf{funExt}:\, ((x:\,A) \to f \,\, x \equiv g \,\, x) \to f \equiv g$ funExt p i x = p x i

Background: Agda & Cubical Agda

assistant based on Martin-Löf type theory. Propositional equality is an inductive family.

Background: Agda & Cubical Agda

Cubical Agda extends Agda with primitives from cubical type theory.

We have an interval pre-type I so that an equality $p: z =_A y$ is now a function

 $p: \mathbf{I} \to A$

such that $p i0 = \infty$ and p i1 = y.

It has notive support for the univalence axiom. The statement (Prop. 5.4)

For [S4P, Q]: Type I+1 → Type, and for X: Type , ([MSQ & POSM] X, •) is the terminal $[S \triangleleft P, QT(X, -) - coalgebra.$

The M-type

M is the type of non-wellfounded labelled trees.

```
record M (S: \mathsf{Type}) (P: S \to \mathsf{Type}): \mathsf{Type} where coinductive field \mathsf{shape}: S \\ \mathsf{pos}: P \; \mathsf{shape} \to \mathsf{M} \; S \; P infinite paths
```

M is the universal type of strictly positive coinductive types.

Example: No

record $\mathbb{N}\infty$: Type where coinductive field

 $\mathsf{pred}\infty$: Maybe $\mathbb{N}\infty$

 $0, 1, 2, \dots : N\infty$ $\infty : N\infty \text{ and } \text{pred} \infty (\infty) = \infty$

To represent Noo via M, Q(i) define:

 $S = T \uplus T$ $Q (inl _) = \bot$ $Q (inr _) = T,$

Then MSQ = Noo.

PosM: finite paths through an M-tree

data PosM : M S $Q \rightarrow \mathsf{Type}$ where

PosM O

here : $\{m: \mathsf{M}\ S\ Q\} \to \mathsf{PosM}\ m$

below : $\{m: \mathsf{M}\ S\ Q\}\ \{q: Q\ (\mathsf{shape}\ m)\} \to \mathsf{PosM}\ ((\mathsf{pos}\ m)\ q) \to \mathsf{PosM}\ m$

 $S = T \uplus T$ \mathbf{Q} (inl $\underline{}$) = $\underline{}$ \mathbf{Q} (inr $\underline{}$) = $\overline{}$, MSQ = No

inr tt inl tt inr tt tree representations No POSM 00 = 00

PosM 1 =

Ehere, below (here)}

Our Experience

· It was not obvious to us whether the original proof only worked for h-sets.

Our Experience

- · It was not obvious to us whether the original proof only worked for h-sets.
- . We had an issue with Agda's termination checker that meant we had to prove some things in a roundabout way.

Future work

Moun result of original paper talks about containers (not their functors) being closed under u and v. Requires more wild category theory.

· Containers in HoTT, for semantics of higher inductive types.

Future work

Moun result of original paper talks about containers (not their functors) being closed under u and v. Requires more wild category theory.

· Containers in HoTT, for semantics of higher inductive types.

THANK YOU!