
Formalising Inductive

& Coinductive Containers

Stefania Damato
,
Thorsten Altenkirch

,
Axel Ljungstrom

ITP'25

1st October 2025

Once upon a time.

Once upon a time.

Easy enough

Confusing

I should formalise !

The punch line

We formalised

container functors preserve initial algebras
& terminal coalgebras' in Cubical Agda.

· We improved the original result :
original new

type theory extensional intensional

homotopy level h-Set & anya
decidable containers

type-checking in HoTT

Background : Containers (a .
k

.

a. polynomial functors)

A container is given by a pair S : Set,

P : S-Set
,
written S & P.

Background : Containers (a .
k

.

a. polynomial functors)

A container is given by a pair S : Set,

P : S-Set
,
written S & P.

Containers have a functorial interpretation.

The container functor ISIPD : Set- Set is

defined as :

[S4PDX = = &(Ps - X)

Background : Containers (a .
k

.

a. polynomial functors)
Type

A container is given by a pair S :Set,
Type

p : S-Set, written S & P.

Containers have a functorial interpretation.
Type Type

The container functor [S& PD : Set -> Set is

defined as :

yeaE
[S4PDX : = &(Ps - X) of types

Background : I-any containers

An I-ary container is given by a pair S : Type,

I : 1-S-Type , written S&P.
typex...
&
I

The Fary container functor ISPD : Type ->Type
is defined as :

ISPDX : = 3) Fis -> Xi)

Example : Lists

E.g. FList : Set
?
-> Set

(A , X) ++ 1 + (AxX)
- S

,
P
,
Q such that

= 2(Ps -> A) x(Qs -X)
SiS

FList (A, X) = [S4(P, Q)D (A ,X)

And
, uX . FList (A , X) EINIFinDA u closure

~ X . Frist (A,X)ENo CofinDAV closure

Coinductive types

Induction

Sconstructors

pattern matching

Coinductive types

Induction Coinduction

Sconstructors
3 destructors

pattern matching copattern matching

Coinduction in Agda

In Vanilla Agda (without postulates) :
~ copattern matching
~ guarded corecursion

X not enough extensionality e .g. no function

extensionality

Coinduction in Agda

In Vanilla Agda (without postulates) :
~ copattern matching
~ guarded corecursion

X not enough extensionality e .g. no function

extensionality

In Cubical Agda, funExt is provable.
This facilitates

coinductive reasoning.

Background : Agda & Cubical Agda
is a dependently-typed proof

assistant based on Martin-Lif type theory S

Propositional equality is an inductive family.

Background : Agda & Cubical Agda
Cubical Agda extends Agda with primitives
from cubical type theory.
We have an interval pre-type I so that an

equality p : xFAY is now a function

p : I - A

such that pio = x and pil = y.
i

It has native support for

the univalence axiom
.

The Statement (Prop .

5 . 4)

For ISP , QB : Type

->Type , and for

X : Type ,
((MsaPosMD X , 8)

is the terminal ISI , Q1 (1 , -) - coalgebra.

The M-type

M is the type of non-wellfounded labelled
trees

.

X
finite &

infinite paths

M is the universal type of strictly positive
coinductive types.

Example : No

0, 1 , 2, ...: No

&: No and predo (b)= -

To represent No via M

,define :

Then MSQE No
.

PosM : finite paths through an M-tree

·
MSQE No

tree

representations

Na O 1 ...

PosM O PosM 1 = IPOSM al = o
= [here] There , below (here) 3

Our Experience

It was not obvious to us whether the original
proof only worked for h-sets.

Our Experience

It was not obvious to us whether the original
proof only worked for h-sets.

We had an issue with Agda's termination

checker that meant we had to prove some

things in a roundabout way.

Future work

Main result of original paper talks about

containers (not their functors) being closed

under u and V. Requires more wild category
theory.

· Containers in HOTT
,
for semantics of higher

inductive types.

Future work

Main result of original paper talks about

containers (not their functors) being closed

under u and V. Requires more wild category
theory.

· Containers in HOTT
,
for semantics of higher

inductive types.

THANK YOU !

