Formadis: ng inductive

contuners is hard !

Stefama T alo
l,(mvusitzj of No/bti)/\g/h&m
Joint work with Thorsten Altenkiveh L Axed Hunjstfém

Tollinn ’\—hep@ Saminer, |3 Morch 2025

One uwpon a time ...

Available online at www.sciencedirect.com

a:l:nc:@nln:cT' Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 342 (2005) 3-27

www.elsevier.com/locate/tcs

. . . . 2. Background
Containers: Constructing strictly positive types

2.1. The categorical semantics of dependent types
Michael Abbott?, Thorsten Altenkirch®*, Neil Ghani® g e bp

aDiamond Light Source, Rutherford Appleton Laboratory, UK . :) .
bSchool of Computer Science and Information Technology, Nottingham University, UK This paper can be read in two ways (see Proposition 2.5):

“Depariment of Mathematics and Computer Sclence, Universty of Leloester, UK (1) as a construction within the extensional type theory MLW*t (see [8]) with finite types,
W-types, a proof of true # false and no universes;

(2) as a construction in the internal language of locally cartesian closed categories with
disjoint coproducts and initial algebras of container functors in one variable—we call

Abstract

‘We introduce the notion of a Martin-Léf category—a locally cartesian closed category with disjoint . P .
coproducts and initial algebras of container funimris (the calegorical analogue ofW-gty}r))e,s)fandthen these Martin-Lof categorles.
establish that nested strictly positive inductive and coinductive types, which we call strictly positive
types, exist in any Martin-L6f category.

Central to our development are the notions of containers and container functors. These provide
a new conceptual analysis of data structures and polymorphic functions by exploiting depend
type theory as a convenient way to define constructions in Martin-Lof categories. We also show
that morphisms between containers can be full and faithfully interpreted as polymorphic functions
(i.e. natural transformations) and that, in the presence of W-types, all strictly positive types (including
nested inductive and coinductive types) give rise to containers.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Type theory; Category theory; Container functors; W-Types; Induction; Coinduction; Initial algebras;
Final coalgebras

One uwpon a time ...

Proposition 5.3. Given a container F = (S > P, Q) € G+ then

[WsQ & Pospsupel X =puY. [FI(X,Y); Eusg wmfb .

writing uF = (WgQ > Posp supr) we can conclude that [uF] = pl F[—]].

Proposition 5.4. Given a container F = (S > P, Q) € G+ then

[MsQ & Pospsupr] X=vY. [FI(X, Y); — COI\ GLSI n j

writing vVF = (MgQ > Posp supr) we have [VF = V[F[-]].

T shouwld formalice’

The Stotement (Prop. 5 4)

IF [SeP]: Set™> St is a cntainer

functor, then for X :Set™, we knew e
trmral walgebra. of 164PT X : &b > &t

and ItS carrier &t is Some [T<a@ X .

‘(ontaaners are doed under terminal coalﬂebms).

3

Buckground : Containers

A contwiner s given b:j o par S:Set,
P:S— Seb, written S<P.

(onbairers carve owv o dass ~ o:(N> x) > X
of &trl‘fb(ﬂ lbas(tive/ typu, X d: (X>N) > X

E.g. (ontouner feplesentation of list s N<Fin.

Bud(gr ounol : Containers

Containers have o functoriol inter pretodion .
The container functor LS<eP]: Seb = St s
defined as -

- Ds<PIX = 2 (Ps = X)

- [S<«PD f (s,ﬂ) & (S)]to.j)

Bukground : Containers
For data types parameter sed by 1 or more
Wypes, we have T-ary tontoirers given by

S Sk, P: T»8 > Set for some indexigtype T

Then [S<PI: Set” — Set.

Backgrounol : Coinoluctive, types

- Destrutbors vs constructors
' Copwl:bem wutm;na Vs puttern match).rg

record Stream (A : Type) : Type where

coinductive from : N — Stream N
field hd (from n) = n
hd : A tl (from n) = from (suc n)

tl : Stream A

Background = The M- type

M is the tgpe of non- well founoled Labelled
trees. A tre of ’Cvpe M can have both finite
arcl Infinite pouths -

rrrrr d M (S : Type) (P : S — Type) : Type where
coinductive
field
shape : S
pos : P shape = M S P

M s the umversal type of srictly positive
coinduckive types (dual to W).

&

Background © M-type example
To encode the onatural numbers [

coinductive

field

N‘o VIa- M we dCf\nc S &P prede :

S=T4W
P(inl) =1 So MSP 2 Neo
P(inr _)=T,
inc t+t
tree inl 4t \ ine H:r:)
repmentatims inl £t

conat wrods Zero Succ Zero o0

Background * Finite paths through an M tree

data Pos: M'S P — Type where
here : {m: M S P} — P (shape m) — Pos m
below : {m: MS P} (p: P (shape m)) — Pos ((pos m) p) — Pos m

inr +t inr tt
: ; inr t&
fepresentations inl tt N
in| tt
conat wrals Zero Succ 2ero Succ (Suce 2ers)

o \

Yos = here th: R here bt
7(s blow tt (here tt): Fos

10

Ba(,kgrounoti Coinduction in Agola

In vouwlla ASda (without Post-u,totes)-'

v topatkern mwlrchirg

/" quaroded Ctoreuwrsion

X ot e,nougln ex’cmsionu!itj eq. no function
cxtensionau’cj

11

Baokaroum(f Cubical Aﬂdw

Extends Agd,a, with primitives {rom oubical type

tnay

E(luobta ol o tjpe A is nw a function of
tofm e: T— A whre T is the

W\W\IGL (pfz—)’cjpe

Has more extensional properties tmn Agola

funExt: ((z: A) > fz=g9gz)—>f=g
HnEXto 1 & =pa@ 1
14

The Stotement , moe preusely
for [S4P,Q0: St™ — set, and or
X Set ™,
(IMsa « Pslx, ®)
s te terminal [S<P, Ql ()_(,—)—coalgebm.

Speiol cae : (INeo < Fineod A, ®) is the
terminal waLjabra. of ILT(A,X) =L+ A<X.

3

\I\”Of we need to show (Modulo ndices)

(HMSQ 4 Pos T X ,owt) i the terminal
[S«f, QD (x, -) Coaljebra.

———
=5 |=
Y F— IFl (x, 7)
Fl \[umx,?)

IMSQ < Pos I X —= [F] (X, IMSQ <« Pos T X)

14

Prob(.w 1: Uependencies bebween diagrams
y Z (&s -a‘/) @ d%wd& ‘
p,\l/ @ ‘l/ (lol) Bi° -

MsQ —> 2 (f0s >MS&)
ouwt .S

47 LI P (g, 5)->X
3, @ (i, B
i FJ’ (P(Psg)-’)()x
Pos (fc 3) > X S ((;1(618)—? s (f q)—>x)

(5

Problem 2 - Checking inter meoliote (omputatians

We {rccluwted had 16 check intermediate
(omputoations. Use ‘with’ abstraction ?

(makeFirstEq.intro y)
| Bs y with= (N -

But there are workoroundls .

6

Problem 3: Azola’& ter mination checker

Definitions that shouwld _ |
have been accepted IO > 0 -

(Aj->A{(=10) »pos (Bry)q;
11

a-=
(coom2 y i q)

) » Bhyaib

termination issues, So
we had To find workareunds .

This s an issue with the termination
checleer 3Lthuh*-mm/.a3da/agda/.issuu/.lkm.a.

Lesson L : Generaliseol eliminabion principle

We ware Jol;*hnﬂ stuck with the standayd
elimination Pn‘nu;ple for Pos. (Tbu‘s is
anwLOSmLS to how Puth induction does not
af’Pl‘j to paths with fixed enolpoints)
Solution: Formwlate a ‘jenermuseol)

i mi noton Prinoip& .

Lesson 2: Proof does not lequire ULP

U.Slﬂa UTP was te(\nphng and & wowld hove

made owr {ives easier, but we did not
use o in owr Proo{‘-. Tms geneml«ses the

origiroll reswlt
il .
((EP"/+ Type pe =
for T[[SH’ al : —)% and for wi| codb .
pe
gi{ —)%} OP taw

([[MSQ < Posﬂ)jl—>

))
is e terminal [S<P, ql ()_(,-)—coalgebra..

19

Lesson 3 - De—ablnﬂ with the termination checker

- Avoid using Cwith’ eépeuau.ﬂ in definitiong
that will later be involved in proofs . Use
cwtx‘\l.iwlﬁ functions instead .

"~ U ellmination principles, bwt this miﬂh{:
lead to coherenes that have @ be proved.

L0

Lesson 4 : Geneal cate is easie,r.?

fmha!.LJ, we tried o spedal s of Tiop. S-u-

Showinj thot ([Neo ¢ Fines] A, -) is the

terminal [LT (A,X)-coalgobra., for
[LT (A X) == L+A<X.

In Pmu:ice,, the Jeneral. formuwlation s more
adopted to the kinde of proofs we are d»omg

Conclusion

We Parmod,iseol (contalner.s are dosed under
initiol algebras £ ter minad Coalje,bras’

and olid so Without UIP, Se,neralising
the orig«mwl, reSwlbs .

Peprine * arxiv. org /abs / 2409. 02603

Thoank ou .’

22

