
Formalising coinductive

containers is hard !

Stefania Damato

University of Nottingham
joint work with Thorsten Altenkirch & Axel Ljungstrom

Tallinn Theory Seminar , 13 March 2025

Once upon a timee.

1

Once upon a timee.

Easy enough.

Confusing.

I should formalise !

2

The Statement (Prop. 5. 4)

If ISkPD : Set t- Set is a container

functor
,
then for X : Set

F

,
we know the

terminal coalgebra of 1S4PDX : Set - Set,

and its carrier set is some ITQDX.

'Containers are closed under terminal coalgebras

Background : Containers

A container is given by a pair S : Set,

P : S-Set
,
written S & P.

Containers carve out a class -c : (N - x) -> X

of strictly positive types .

* d : (x + N) - X

E . g. Container representation of list is NFin.

4

Background : Containers

Containers have a functorial interpretation.

The container functor ISIPD : Set- Set is

defined as :

- 1SPDX = = &(Ps - X)
- 1SxpDf(s

, g) : = (s
, fog).

5

Background : Containers

For data types parameterised by 1 or more

types , we have I-ary containers given by

S : Set
, I : 1-s- > Set for some indexing type I.

Then IS k PD : Set
F
-> Set.

6

Background : Coinductive types

Destructors vs constructors

Copattern matching vs pattern matching

T

Background : The M-type

M is the type of non-wellfounded labelled
trees. A tree of type M can have both finite

and infinite paths.

M is the universal type of strictly positive
coinductive types Idual to W).

g

Background : M-type example

To encode the conatural numbers

No via M
,
we define S &P :

g

So MSPEND.

tree

representations

conaturals zero succ zero 2 -

9

Background : Finite paths through an M tree

tree

representations

conaturals zero Succ Zero succ(succ zero)

↓ ↓ ↓
Pos = o herett : Pos here to,

below It (here +t) : Pos
10

Background : Coinduction in Agda

In vanilla Agda (without postulates) :
~ copattern matching
-
guarded corecursion

X not enough extensionality e .g. no function

extensionality

11

Background : Cubical Agda

Extends Agda with primitives from cubical type
theory.
Equality on a type A is now a function of

the form e : -A
,
where I is the

interval (pre-) type.
Has more extensional properties than Agda :

12

The statement
, more precisely

For ISDP , QD : Set t -> Set
,
and for

X : Set
F

,

(IMS a < PosBX
, :)

is the terminal ISI , Q1 (1 , -) - coalgebra.

Special case : (CNa FinwDA , o) is the

terminal coalgebra of ILD(A, X) := 1+ AxX. 13

What we need to show indices(modulo

(IMSQ PosDX
,
out) is the terminal

ISP
,
QB (X ,

-) Coalgebra.-
:F

B
Y- IFB(X , Y)

↑ ↓ ↓ IFB(X, 5)
#MS Q PosDXn CFD (X , IMSQIPosDX)

14

Problem 1 : Dependencies between diagrams

Y Agin[(Qs eY) ② decendsaS :S

3⑰↓ ↓ Lid
, 3 1

0 -

MSQ Elias Ma

g
:Y= P(p, y)- X

L ② ↓ (id, Bio-(

(P(B, y)-> X)X
Pos (i, y)-X ((q:Qs) -> Pos (+ q)->X) 15

Problem 2 : Checking intermediate computations

We frequently had to check intermediate

computations. Use 'with' abstraction ?

But there are workarounds.
16

Problem 3 : Agda's termination checker

Definitions that should

have been accepted raised
termination issues

,
so

we had to find workarounds.

This is an issue with the termination

checker : github . com/agda/agda/issues/4740.
17

Lesson 1 : Generalised elimination principle

We were getting stuck with the standard

elimination principle for Pos . (This is

analogous to how path induction does not

apply to paths with fixed endpoints .)

Solution : Formulate a 'generalised
elimination principle.

18

Lesson 2 : Proof does not require UIP

Using UIP was tempting and it would have

made our lives easier
,
but we did not

use it in our proof. This generalises the

original result :
C(Type Type Type =

For ISP , QD : Set

-> Set, and for wild cat.

Type Type
X : Set* - Set, of types

(IMS a < PosBX
,

=)
3)

is the terminal ISI , Q1 (1 , -) - coalgebra. 19

Lesson 3 : Dealing with the termination checker

Avoid using 'with especially in definitions

that will later be involved in proofs. Use

auxiliary functions instead
.

use elimination principles , but this might
lead to coherences that have to be proved.

20

Lesson 4 : General case is easier ?

Initially , we tried a special case of Prop. 5 . 4 :

showing that (CNa
< FinaDA

, -) is the

terminal ILD(A
, X) -coalgebra , for

ILD(A
, X)

: = 1+ AxX.

In practice, the general formulation is more

adapted to the kinds of proofs we are doing.
21

Conclusion

We formalised 'containers are closed under

initial algebras & terminal coalgebras
and did so without UIP , generalising
the original results -

Preprint : arxiv
. org/abs/2409 .

02603

Thank you !
22

