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Strict positivity!

data Contra : Set where
¢ : ((Contra - Bool) - Bool) » Contra ¢

data ooTree : Set where
leaf : ooTree &)
node : (N > ooTree) > ooTree
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HOW do we approach strict positivity?

@ Syntactically [Abel and Altenkirch, 2000]

We define the set of types in which the variables X occur at
most strictly positive Ty(X) inductively by the following rules:

o€ Ty() T € Ty(X)

—  (Cons —— (Var -

0,l€Ty(X)( onst) _\L,‘eTy(X)( ) e e X) (Arr)
_orenNX) (Sum),(Prod) L(X” (Mu)
oc+710x1eTy(X) uY.oe Ty(X) 99

@ Semantically

Use containers to provide a categorical semantics for
strictly positive types.
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WHAT are containers? An overview

Class of types Functor type Category theory Type theoretic Universal
semantics normal form type
ordinary inductive Set — Set initial algebras of containers W-type
types endofunctors on
e.g. N : Set Set
inductive families (1 - Set) —» (I > Set) initial algebras of indexed WI-type
endofuntors on containers

e.g. Fin: N — Set

QllTs

e.g. Con : Set,
Ty : Con — Set

sequence of functors L,
and R, and sequence of
categories of dialgebras

Set/

initial object in last
constructed
category of
dialgebras A,

representations

constructed via
generalised
containers
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W-type
The type of well-founded labelled trees.

data W (S : Set) (P : S » Set) : Set where
sup : (s : S) > (Ps>WSP)>WSP

N as a W-type
data N : Set where S=1+1
zero : N
succ : N > N P(inlx) =0
P(inrx) =1
N =WSP.
1+1
Z:WSP
z = sup (inl %) (1()) ./ >1+1\
. ° 1+1
S:WSP—>WSP

sn = sup (inr ) (1_.n) / \
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Containers

Definition
A container is a pair S : Set, P: S — Set, written as S < P.

N as (the initial algebra of) an endofunctor

Fn: Set — Set
Fa(X) =1+ X

Definition
Extension functor [S < P]: Set — Set is defined on objects by
X > (s:8)(Ps - X).




Categories of containers

Extension functor [S < P]: Set — Set is defined on objects by
X >(s: 8)(Ps— X).

[-1

Cont Set — Set



Contributions

@ Formalisation in Cubical Agda of
e generalised containers
category Cont
functor [_]: Cont — (Set — Set)
proof that [[_] is full and faithful ( ME¥ presentation)
(WIP) proofs that ordinary container functors are closed under
fixed points
e proof that indexed containers are a special case of generalised
containers.

https://github.com/stefaniatadama/TYPES-23

@ (WIP) Updated, type-theoretic review paper on containers,
including discussion on generalised containers.
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[_1 is full and faithful, using Yoneda
Given a: [S<P] — [T <« Q]], we obtain a container morphism.
f (IS<PIX - [T<QIX)
X:Set
- f (Z(Ps X)) > [T« Q]]X) expanding definition of [S < P] X
X:Set Vg

= f n((Ps - X) = [T<Q]X) currying in Set:
X:Set 5.5 N(ZAB)C)=N(A(NBC))

El_[f (Ps—>X)—>[T<QlX)  [andNcommute
s:S X:Set

= ]_[[[T <QJ(Ps) covariant Yoneda lemma:
s:S for F: C — Set, A : |C|,
Jie(C(AX), FX) = FA
l_[ Z Qt— Ps) expanding definition of [T <« Q] X
s:S tT

= Z(u: S— T)(l_[ Q(us) - Ps) type theoretic axiom of choice
s:S

=(8<P)—> (T<Q) definition of container morphism
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Generalised containers

Definition
Given category C, a generalised container is a pair
S:Set,P: S — |C|.

The extension functor [S < P]: C — Set is defined on objects by

X > '(s: 8)(C(Ps,X)).

Useful for:
@ strictly positive QlITs.
@ container model of type theory.
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Conclusion

@ Containers: a semantic way to talk about strictly positive
types.

@ They form a category Cont which is Cartesian closed.

@ They are a normal form for strictly positive types.

e Unique representation as containers.

e Polymorphic functions on strictly positive types have a unique
representation as container morphisms.

Thank you!
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