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WHY do we need containers (a.k.a. polynomial functors)?

Strict positivity!

data Contra : Set where

c : ((Contra → Bool) → Bool) → Contra ,

data ∞Tree : Set where

leaf : ∞Tree

node : (N → ∞Tree) → ∞Tree

-
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HOW do we approach strict positivity?

1 Syntactically

[Abel and Altenkirch, 2000]

å

æ

2 Semantically

Use containers to provide a categorical semantics for
strictly positive types.
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WHAT are containers?

. . . and many more.
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WHAT are containers? An overview

Class of types Functor type Category theory
semantics

Type theoretic
normal form

Universal
type

ordinary inductive
types

e.g. N : Set

Set→ Set initial algebras of
endofunctors on

Set

containers W-type
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W-type

The type of well-founded labelled trees.

data W (S : Set) (P : S → Set) : Set where

sup : (s : S) → (P s → W S P) → W S P
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Containers

Definition
A container is a pair S : Set,P : S → Set, written as S C P.

N as (the initial algebra of) an endofunctor

FN : Set→ Set

FN (X) B 1 + X

Definition
Extension functor ~S / P� : Set→ Set is defined on objects by
X 7→

∑
(s : S)(P s → X).
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Categories of containers

Definition
Extension functor ~S / P� : Set→ Set is defined on objects by
X 7→

∑
(s : S)(P s → X).

Cont Set→ Set

S / P T / Q

u/f

~ �

~S / P� ~T / Q�

~u/f�
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Contributions

Formalisation in Cubical Agda of
generalised containers
category Cont
functor ~ � : Cont→ (Set→ Set)
proof that ~ � is full and faithful ( presentation)
(WIP) proofs that ordinary container functors are closed under
fixed points
proof that indexed containers are a special case of generalised
containers.

https://github.com/stefaniatadama/TYPES-23

(WIP) Updated, type-theoretic review paper on containers,
including discussion on generalised containers.
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~ � is full and faithful, using Yoneda

Given α : ~S / P�→ ~T / Q�, we obtain a container morphism.∫
X :Set

(~S / P�X → ~T / Q�X)

=

∫
X :Set

(∑
s:S

(P s → X))→ ~T / Q�X
)

expanding definition of ~S / P�X

�

∫
X :Set

∏
s:S

((P s → X)→ ~T / Q�X) currying in Set:
Π ((Σ A B) C) � Π (A (Π B C))

�
∏
s:S

∫
X :Set

((P s → X)→ ~T / Q�X)
∫

and Π commute

�
∏
s:S

~T / Q� (P s) covariant Yoneda lemma:
for F : C→ Set,A : |C|,∫

X :|C|
(C(A ,X),F X) � F A

=
∏
s:S

∑
t:T

(Q t → P s) expanding definition of ~T / Q�X

�
∑

(u : S → T)
(∏

s:S

Q(u s)→ P s
)

type theoretic axiom of choice

= (S / P)→ (T / Q) definition of container morphism
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Generalised containers

Definition
Given category C, a generalised container is a pair
S : Set ,P : S → |C|.

The extension functor ~S / P� : C→ Set is defined on objects by
X 7→

∑
(s : S)(C(P s,X)).

Useful for:

strictly positive QIITs.

container model of type theory.
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Conclusion

Containers: a semantic way to talk about strictly positive
types.

They form a category Cont which is Cartesian closed.

They are a normal form for strictly positive types.

Unique representation as containers.

Polymorphic functions on strictly positive types have a unique
representation as container morphisms.

Thank you!

11



Conclusion

Containers: a semantic way to talk about strictly positive
types.

They form a category Cont which is Cartesian closed.

They are a normal form for strictly positive types.

Unique representation as containers.

Polymorphic functions on strictly positive types have a unique
representation as container morphisms.

Thank you!

11



References I

Abbott, M., Altenkirch, T., and Ghani, N. (2005).

Containers: Constructing strictly positive types.

Theoretical Computer Science, 342(1):3–27.

Abbott, M. G. (2003).

Categories of Containers.

PhD thesis, University of Leicester.

Abel, A. and Altenkirch, T. (2000).

A predicative strong normalisation proof for a λcalculus with
interleaving inductive types.

In Types for Proofs and Programs, pages 21–40, Berlin, Heidelberg.
Springer Berlin Heidelberg.

12



References II

Altenkirch, T., Ghani, N., Hancock, P., Mcbride, C., and Morris, P.
(2015).

Indexed containers.

Journal of Functional Programming, 25.

Altenkirch, T. and Kaposi, A. (2021).

A container model of type theory.

In TYPES 2021.

Altenkirch, T., Levy, P., and Staton, S. (2010).

Higher-order containers.

In Programs, Proofs, Processes, pages 11–20, Berlin, Heidelberg.
Springer Berlin Heidelberg.

13



References III

Gambino, N. and Hyland, M. (2004).

Wellfounded trees and dependent polynomial functors.

In Types for Proofs and Programs, pages 210–225, Berlin,
Heidelberg. Springer Berlin Heidelberg.

14


