Revisiting Containers
in Cubical Agda

Stefania Damato Thorsten Altenkirch

University of Nottingham, UK

TYPES Conference

12t June 2023

WHY do we need containers (ak.a. polynomial functors)?

Strict positivity!

WHY do we need containers (ak.a. polynomial functors)?

Strict positivity!

data Contra : Set where
¢ : ((Contra - Bool) - Bool) » Contra ¢

WHY do we need containers (ak.a. polynomial functors)?

Strict positivity!

data Contra : Set where
¢ : ((Contra - Bool) - Bool) » Contra ¢

data ooTree : Set where
leaf : ooTree &)
node : (N > ooTree) > ooTree

HOW do we approach strict positivity?

@ Syntactically

HOW do we approach strict positivity?

@ Syntactically [Abel and Altenkirch, 2000]

We define the set of types in which the variables X occur at
most strictly positive Ty(X) inductively by the following rules:
o€ Ty() T € Ty(X)

——— (Const —— (Var .
U,IETy(X)() _‘{,‘eTy(X)() e e X) (Arr)

o7 € Ty(X ceTy(X,Y
A (Sum),(Prod) # (Mu)
oc+710x1eTy(X) uY.oe Ty(X) 99

HOW do we approach strict positivity?

@ Syntactically [Abel and Altenkirch, 2000]

We define the set of types in which the variables X occur at
most strictly positive Ty(X) inductively by the following rules:

o€ Ty() T € Ty(X)

— (Cons — (Var -

leeTY(X)(o X*‘GTY(X)(. o= 7eTy(X) ()
_orenNX) (Sum),(Prod) w (Mu)
oc+710x1eTy(X) uY.oe Ty(X) 99

@ Semantically

HOW do we approach strict positivity?

@ Syntactically [Abel and Altenkirch, 2000]

We define the set of types in which the variables X occur at
most strictly positive Ty(X) inductively by the following rules:

o€ Ty() T € Ty(X)

— (Cons —— (Var -

0,l€Ty(X)(onst) _\L,‘eTy(X)() e e X) (Arr)
_orenNX) (Sum),(Prod) L(X” (Mu)
oc+710x1eTy(X) uY.oe Ty(X) 99

@ Semantically

Use containers to provide a categorical semantics for
strictly positive types.

WHAT are containers?

Theoretcal
Computer Science
FISEVIER 2

——

Containers: Constructing strictly positive types
chhael Abbott*, Thorsten Altenkirch®*, Neil Ghani®

el i e Rterfod ppleto Laborsos, U

“Deparimrtof Mthematic o Compater S, Uiy of e, UK

Absteact

pes)—and then

ypescxistn any Martin Lt c
Cenn gt e e ions of cominrs and consiner uncirs. hose provide

e analysis of data structures nd polymorphic fnctons by cxploiing dependent

Ly ey a4 comselnt a1 Gl ot 1 Mo Lot cstegores: We b o

et v) s ot
S Elsevier .Y, Al righs resere

i

WHAT are containers?

. e — — Categories of Containers
- ‘Computer Science

——
‘Thesis submitted for the degree of

Containers: Constructing strictly positive types Doctor of Philosophy
| a the University o Leicester
chhael Abbott*, Thorsten Altenkirch®*, Neil Ghani®

el i o R Appleton Laborsors

“Deparimrtof Mthematic o Compater S, Uiy of e, UK

by
At
e sndthen

e Michacl Gordon Abbot BA (Cambridge)

pes it M L co
ot dowloment e sl of consors s onnerfncirs. Tt rovide Department of Computer Science
'em i of s s 1 o o o cxplotin ceenden
Ly ey s & oo vy 1o Gl s M Lo . W s sow Universityof Leicester
T e e
5 vk B3 All s o

et August 2003

WHAT are containers?

Categories of Containers

serann @ oimner: {:::::‘s“em

FISEVIER 2

[——
Thesis submitted for the degree of

Containers: Constructing strictly positive types Doctor of Philosophy

Michael Abbort, Thorsen Altenkirch®*, Neil Ghani®

e i S, Reford Appleo Labortors,

at the University of Leicester

“Dapurimentof Mthemascsand Compater Slence, Unisersyof e, U

by
Absteact
anithen

i Michacl Gordon Abbott BA (Cambridge)

ypesexist i any Martin L category.
ol o delogment st o ekns of cotlors i oo, Ths i Department of Computer Science

& new conceptal analysis of dta strctres ad poly dons by cxploiing dependent .
e ey b e iy o dee st o.Mt L3t g, Ve s Show University of Leicester

et v) s ot
2008 Hlsvier .Y, All ighs resere

August 2003

Ko
il et

Higher Order Containers

Thorsten Altenkirch?, Paul Levy?, and Sam Staton®

3 Unirersityof Notingham
: Birmingham
e o Combides

Abstract. C talk about
types. In previous work it was shown that containers are closed under

terminal coalgebras. In the present paper we. pirivy surprisingly, the
category of containers is cartesian closed, giving rise to

closed subcategory of endofunctors. The result has imeresﬁns applica-
syotax. We also show that while the category of containers s it L~
its, it is not locally cartesian closed.

WHAT are containers?

serann @ oimner: ‘Theoretical

P Computer Science

FISEVIER

——

Containers: Constructing strictly positive types
chhael Abbott*, Thorsten Altenkirch®*, Neil Ghani®

el i e, o Appletn Labort

“Dapurimentof Mthemascsand Compater Slence, Unisersyof e, U

Absteact

opes,cxistin any Mari-Lo cat
ol o delogment st o ekns of cotlors i oo, Ths i

& new conceptal analysis of dta strctres ad poly ting dependent

e ey B oo w1 e ot i L3 e W sy o

nested inductiv and oinductiv tpes) giers o contaner,
2008 Elsevier B.Y: All ights esrved,

Ko
[,

Categories of Containers

‘Thesis submitted for the degree of
Doctor of Philosophy
at the University of Leicester

Michacl Gordon Abbott BA (Cambridge)
Department of Computer Science

University of Leicester

August 2003

Higher Order Containers

Thorsten Altenkirch?, Paul Levy?, and Sam Staton®

* Uni

v of Nottingham
Universty of Brmingiam
* University of Cambridge

Abstract.
types. In previous work it

s to talk about strictly p
was shown that contanersare cloed under

terminal coalgebras. In the present paper we. pirivy supriigly,the
category of containers is cartesian closed, giving ise to &
Conts ubcategory of emdoanctors The vl e teresing appTcn

i)
syntax. We also show that while the category of containers has finite lim-
its, it is not locally cartesian closed.

Indexed Containers

Thorsten Altenkirch ~ Neil Ghani ~ Peter Hancock
Conor McBride Peter Morris

May 12,2014

Abstract
‘We show that the synactically rich notion of strctly positive families can be

the novel notion of indexcd containers. As a result, we show indexcd contain-
at

posit s th
ontainers provide normal forms for stictly positive types. Iterestingly, tis tep.

type theory.
‘Agda system ~ the missing bits are due to the current shortcomings of the Agda
system.

WHAT are containers?

o serann @ oimner: ‘Theoretical

y Computer Science
FISEVIER 2

——

Containers: Constructing strictly positive types
chhael Abbott*, Thorsten Altenkirch®*, Neil Ghani®

e i S, Reford Appleo Labortors,

“Dapurimentof Mthemascsand Compater Slence, Unisersyof e, U

Absteact

anithen

ypesexist i any Martin L category.
ol o delogment st o ekns of cotlors i oo, Ths i

& new conceptal analysis of dta strctres ad poly dons by cxploiing dependent

e s B oo w1 e ot i L3 cn

e, We oo show

et v) s ot
2008 Hlsvier .Y, All ighs resere

Ko
il et

Categories of Containers

‘Thesis submitted for the degree of
Doctor of Philosophy

at the University of Leicester

Michacl Gordon Abbott BA (Cambridge)
Department of Computer Science

University of Leicester

August 2003

Higher Order Containers

Thorsten Altenkirch?, Paul Levy?, and Sam Staton®

3 Unirersityof Notingham
: Birmingham
e o Combides

Abstract. C talk about
types. In previous work it was shown that containers are closed under

terminal coalgebras. In the present paper we. pirivy surprisingly, the
category of containers is cartesian closed, giving rise to

closed subcategory of endofunctors. The result has imeresﬁns applica-
syotax. We also show that while the category of containers s it L~
its, it is not locally cartesian closed.

Indexed Containers

Thorsten Altenkirch ~ Neil Ghani ~ Peter Hancock
Conor McBride Peter Morris

May 12,2014

Abstract
10 e ot h sty deh o o ety pokion il 2 b

the wnel sconof indesd comaen. As s sl weshow el o

e i sl forns o el posive pen. el

type theory.
‘Agda system ~ the missing bits are due to the current shortcomings of the Agda
system.

.and many more.

WHAT are containers? An overview

Class of types Functor type Category theory Type theoretic Universal
semantics normal form type
ordinary inductive Set — Set initial algebras of containers W-type
types endofunctors on

e.g. N : Set Set

WHAT are containers? An overview

Class of types Functor type Category theory Type theoretic Universal
semantics normal form type
ordinary inductive Set — Set initial algebras of containers W-type
types endofunctors on
e.g. N : Set Set
inductive families (I - Set) —» (I > Set) initial algebras of indexed WI-type
endofuntors on containers

e.g. Fin: N — Set

Set/

WHAT are containers? An overview

Class of types Functor type Category theory Type theoretic Universal
semantics normal form type
ordinary inductive Set — Set initial algebras of containers W-type
types endofunctors on
e.g. N : Set Set
inductive families (1 - Set) —» (I > Set) initial algebras of indexed WI-type
endofuntors on containers

e.g. Fin: N — Set

QllTs

e.g. Con : Set,
Ty : Con — Set

sequence of functors L,
and R, and sequence of
categories of dialgebras

Set/

initial object in last
constructed
category of
dialgebras A,

representations

constructed via
generalised
containers

WHAT are containers? An overview

Class of types Functor type Category theory Type theoretic Universal
semantics normal form type
ordinary inductive Set — Set initial algebras of containers W-type
types endofunctors on

e.g. N : Set Set

W-type
The type of well-founded labelled trees.

data W (S : Set) (P : S » Set) : Set where
sup : (s : S) > (Ps>WSP)>WSP

W-type
The type of well-founded labelled trees.

data W (S : Set) (P : S » Set) : Set where
sup : (s : S) > (Ps>WSP)>WSP

N as a W-type
data N : Set where
zero : N

succ : N > N

W-type
The type of well-founded labelled trees.

data W (S : Set) (P : S » Set) : Set where
sup : (s : S) > (Ps>WSP)>WSP

N as a W-type
data N : Set where S=1+1
zero : N

succ : N »> N

W-type
The type of well-founded labelled trees.

data W (S : Set) (P : S » Set) : Set where
sup : (s : S) > (Ps>WSP)>WSP

N as a W-type

data N : Set where S=1+1
zero : N
succ : NN » N P(inlx) =0

P(inr x) :=

W-type
The type of well-founded labelled trees.

data W (S : Set) (P : S » Set) : Set where
sup : (s : S) > (Ps>WSP)>WSP

N as a W-type

data N : Set where S=1+1
zero : N
succ : > N P(inlx) =0
P(inr x) :=

N =WSP.

W-type
The type of well-founded labelled trees.

data W (S : Set) (P : S » Set) : Set where
sup : (s : S) > (Ps>WSP)>WSP

data N : Set where S=1+1
zero : N
succ : N> N P(inlx) =0
P(inrx) =1
N=WSP.
Z:WSP

z = sup (inl x) (1())
S:WSP—->WSP
sn = sup (inrx) (1_.n)

W-type
The type of well-founded labelled trees.

data W (S : Set) (P : S » Set) : Set where
sup : (s : S) > (Ps>WSP)>WSP

N as a W-type
data N : Set where S=1+1
zero : N
succ : N > N P(inlx) =0
P(inrx) =1
N =WSP.
1+1
Z:WSP
z = sup (inl %) (1()) ./ >1+1\
. ° 1+1
S:WSP—>WSP

sn = sup (inr) (1_.n) / \

Containers

A container is a pair S : Set, P: S — Set, written as S < P.

Containers

Definition
A container is a pair S : Set, P: S — Set, written as S < P.

N as (the initial algebra of) an endofunctor

Fn: Set — Set
Fa(X) =1+ X

Containers

Definition
A container is a pair S : Set, P: S — Set, written as S < P.

N as (the initial algebra of) an endofunctor

Fn: Set — Set
Fa(X) =1+ X

Definition
Extension functor [S < P]: Set — Set is defined on objects by
X > (s:8)(Ps - X).

Categories of containers

Extension functor [S < P]: Set — Set is defined on objects by
X >(s: 8)(Ps— X).

[-1

Cont Set — Set

Contributions

@ Formalisation in Cubical Agda of
e generalised containers
category Cont
functor [_]: Cont — (Set — Set)
proof that [[_] is full and faithful (ME¥ presentation)
(WIP) proofs that ordinary container functors are closed under
fixed points
e proof that indexed containers are a special case of generalised
containers.

https://github.com/stefaniatadama/TYPES-23

@ (WIP) Updated, type-theoretic review paper on containers,
including discussion on generalised containers.

[_1 is full and faithful, using Yoneda

Given a: [S<P] — [T <« Q]], we obtain a container morphism.

f (IS<PIX - [T<QIX)
X:Set

=(8<P)—> (T<Q) definition of container morphism

[_1 is full and faithful, using Yoneda
Given a: [S<P] — [T <« Q]], we obtain a container morphism.
f (IS<PIX - [T<QIX)
X:Set
- f (Z(Ps X)) > [T« Q]]X) expanding definition of [S < P] X
X:Set Vg

= f n((Ps - X) = [T<Q]X) currying in Set:
X:Set 5.5 N(ZAB)C)=N(A(NBC))

El_[f (Ps—>X)—>[T<QlX) [andNcommute
s:S X:Set

=]_[[[T <QJ(Ps) covariant Yoneda lemma:
s:S for F: C — Set, A : |C|,
Jie(C(AX), FX) = FA
l_[Z Qt— Ps) expanding definition of [T <« Q] X
s:S tT

= Z(u: S— T)(l_[Q(us) - Ps) type theoretic axiom of choice
s:S

=(8<P)—> (T<Q) definition of container morphism

Generalised containers

Definition
Given category C, a generalised container is a pair
S:Set,P: S — |C|.

The extension functor [S < P]: C — Set is defined on objects by

X > '(s: 8)(C(Ps,X)).

Generalised containers

Definition
Given category C, a generalised container is a pair
S:Set,P: S — |C|.

The extension functor [S < P]: C — Set is defined on objects by

X > '(s: 8)(C(Ps,X)).

Useful for:
@ strictly positive QlITs.
@ container model of type theory.

Conclusion

@ Containers: a semantic way to talk about strictly positive
types.

@ They form a category Cont which is Cartesian closed.

@ They are a normal form for strictly positive types.

e Unique representation as containers.

e Polymorphic functions on strictly positive types have a unique
representation as container morphisms.

Conclusion

@ Containers: a semantic way to talk about strictly positive
types.

@ They form a category Cont which is Cartesian closed.

@ They are a normal form for strictly positive types.

e Unique representation as containers.

e Polymorphic functions on strictly positive types have a unique
representation as container morphisms.

Thank you!

References |

ﬁ Abbott, M., Altenkirch, T., and Ghani, N. (2005).
Containers: Constructing strictly positive types.
Theoretical Computer Science, 342(1):3-27.

[§ Abbott, M. G. (2003).
Categories of Containers.
PhD thesis, University of Leicester.

@ Abel, A. and Altenkirch, T. (2000).

A predicative strong normalisation proof for a Acalculus with
interleaving inductive types.

In Types for Proofs and Programs, pages 21—40, Berlin, Heidelberg.

Springer Berlin Heidelberg.

References Il

@ Altenkirch, T., Ghani, N., Hancock, P., Mcbride, C., and Morris, P.
(2015).

Indexed containers.
Journal of Functional Programming, 25.

[§ Altenkirch, T. and Kaposi, A. (2021).
A container model of type theory.
In TYPES 2021.

@ Altenkirch, T., Levy, P, and Staton, S. (2010).
Higher-order containers.

In Programs, Proofs, Processes, pages 11-20, Berlin, Heidelberg.
Springer Berlin Heidelberg.

References Il

[§ Gambino, N. and Hyland, M. (2004).
Wellfounded trees and dependent polynomial functors.

In Types for Proofs and Programs, pages 210-225, Berlin,
Heidelberg. Springer Berlin Heidelberg.

