A Container Model of Type Theory

Stefania Damato
j-w.w. Thorsten Altenkirch

University of Nottingham, UK

YaMCATS Meeting 32

14" September 2023

Motivation:
modelling inductive types

Functorial semantics, for ordinary inductive types
data N : Set where

zero : N
succ : N > N

Stefania Damato A container model of type theory

Functorial semantics, for ordinary inductive types

data N : Set where
zero : N
succ : N > N

l

zero: N'

succ: NV

Stefania Damato A container model of type theory

Functorial semantics, for ordinary inductive types

data N : Set where

zero : N
succ : N > N

zero: N'
succ: NV

l

zero x succ : N'+V

Stefania Damato A container model of type theory

Functorial semantics, for ordinary inductive types

data N : Set where
zero : N
succ : N > N

)
zero: N'
succ: NV
)
zero x succ : N'+V

l

zeroxsucc:1+N->N

Stefania Damato A container model of type theory

Functorial semantics, for ordinary inductive types

data N : Set where
zero : N
succ : N > N

l

zero: N'

succ: NV

l

zero x succ : N'+V

l

zeroxsucc:1+N->N

8

Fy: Set — Set
Fa(X)=1+X

Stefania Damato A container model of type theory

Functorial semantics, for ordinary inductive types

data N : Set where data C : Set where
zero : N c: ((C->2)->2)>C
succ : N > N

l

zero: N'

succ: NV

l

zero x succ : N'+V

l

zeroxsucc:1+N->N

8

Fy: Set — Set
Fa(X)=1+X

Stefania Damato A container model of type theory

Functorial semantics, for ordinary inductive types

data N : Set where data C : Set where
zero : N c: ((C->2)->2)>C
succ : N » N !

! c:((C-2)>2)>C
zero: N'

succ: NV

l

zero x succ : N'+V

l

zeroxsucc:1+N->N

8

Fy: Set — Set
Fa(X)=1+X

Stefania Damato A container model of type theory

Functorial semantics, for ordinary inductive types

data N : Set where data C : Set where
zero : N c: ((C->2)->2)>C
succ : N » N !
l c:((C-2)>2)>C
zero: N' 1
NN
succ: N Fc: Set — Set
) Fc(X)=(X—->2)—>2
zero x succ : N'+V
l
zeroxsucc:1+N->N
l
Fy: Set — Set
Fa(X)=1+X

Stefania Damato A container model of type theory

The W-type

data W (S : Set) (P : S » Set) : Set where
sup : (s : S) > (Ps->WSP)>WSP

Stefania Damato A container model of type theory

The W-type

data W (S : Set) (P : S » Set) : Set where
sup : (s : S) > (Ps->WSP)>WSP

N as a W-type
data N : Set where
zero : N

succ : N > N

Stefania Damato A container model of type theory

The W-type

data W (S : Set) (P : S » Set) : Set where
sup : (s : S) > (Ps->WSP)>WSP

N as a W-type
data N : Set where S=1+1
zero : N

succ : N > N

Stefania Damato A container model of type theory

The W-type

data W (S : Set) (P : S » Set) : Set where
sup : (s : S) > (Ps->WSP)>WSP

N as a W-type

data N : Set where S=1+1
zero : N
succ : N » N P(inlx):=0
P(inrx) =

Stefania Damato A container model of type theory

The W-type

data W (S : Set) (P : S » Set) : Set where
sup : (s : S) > (Ps->WSP)>WSP

N as a W-type

data N : Set where S=1+1
zero : N
succ : N » N P(inlx):=0
P(inrx) =
N=WSP.

Stefania Damato A container model of type theory

The W-type

data W (S : Set) (P : S » Set) : Set where
sup : (s : S) > (Ps->WSP)>WSP

data N : Set where S=1+1
zero : N
succ : N> N P(inl %) =0
P(inrx) =1
N =WSP.
Z:WSP

z = sup (inlx) (1())
S:WSP—>WSP
sn = sup (inrx) (1_.n)

Stefania Damato A container model of type theory

The W-type

data W (S : Set) (P : S » Set) : Set where
sup : (s : S) > (Ps->WSP)>WSP

N as a W-type
data N : Set where S=1+1
zero : N
succ : N> N P(inlx) =0
P(inrx) =1
N=WSP.
1+1
Z:WSP
z (inl %) (A()) S
‘= sup
./ 1+1
S:WSP > WSP
sn:=sup (inrx) (1-.n) ./ \‘

Stefania Damato A container model of type theory

Containers (a.k.a. polynomial functors)

A container is a pair S : Set, P: S — Set, written as S < P.

Stefania Damato A container model of type theory

Containers (a.k.a. polynomial functors)

A container is a pair S : Set, P: S — Set, written as S < P.

Extension functor [S < P]: Set — Set is defined by

[S<PIX:=) (s:S)(Ps— X).

Stefania Damato A container model of type theory

Containers (a.k.a. polynomial functors)

A container is a pair S : Set, P: S — Set, written as S < P.

Extension functor [S < P]: Set — Set is defined by
[S<PIX:=) (s:S)(Ps— X).

S=1+1 P(inlx) =0
P(inrx) =1
[S <P]: Set — Set
[S<PIX = (s:1+1)((A(inl %).0; (inr).1) - X)
=1+ X

Stefania Damato A container model of type theory

Containers (a.k.a. polynomial functors)

A container is a pair S : Set, P: S — Set, written as S < P.

Extension functor [S < P]: Set — Set is defined by

[S<PIX:=) (s:S)(Ps— X).

Containers enforce strict positivity
semantically.

Stefania Damato A container model of type theory

An overview of inductive types

Class of types Functor type Category theory Type theoretic Universal
semantics normal form type
ordinary inductive Set — Set initial algebras of containers W-type
types endofunctors on
e.g. N : Set Set

Stefania Damato A container model of type theory

An overview of inductive types

Class of types Functor type Category theory Type theoretic Universal
semantics normal form type
ordinary inductive Set — Set initial algebras of containers W-type
types endofunctors on
e.g. N : Set Set
inductive families (I - Set) —» (I > Set) initial algebras of indexed Wi-type
e.g. Fin: N — Set endofuntors on containers
Set/

Stefania Damato

A container model of type theory

An overview of inductive types

Class of types Functor type Category theory Type theoretic Universal
semantics normal form type
ordinary inductive Set — Set initial algebras of containers W-type
types endofunctors on
e.g. N : Set Set
inductive families (1 - Set) —» (I > Set) initial algebras of indexed Wi-type
e.g. Fin: N — Set endofuntors on containers
Set/
QllTs ? ? ? ?
e.g. Con : Set,
Ty : Con — Set

Stefania Damato

A container model of type theory

Quotient inductive-inductive types

QliTs = Quotient inductive types
~ | Inductive-inductive types

Stefania Damato A container model of type theory

Quotient inductive-inductive types

Quotient inductive types

QllTs = L .
Inductive-inductive types

Example 1.1: (Simplified) intrinsic syntax of type theory

data Con : Set
data Ty : Con > Set

data Con where
o : Con
, (I : Con) (A: Ty) » Con
eq : (' : Con) (A :Ty) B : Ty (I, A) »
((r,An ,B=a,XTAB

data Ty where
t:(T:Con) »Ty Tl
Y : (T :Con) (A:TyDMND->Ty (T, A>Ty Tl

Stefania Damato A container model of type theory

Functorial semantics, for QIITS [Altenkirch et al., 2018]

Example 1.1

data Con : Set
data Ty : Con » Set

data Con where
© i Con
2 (T :Con) (A: Ty » Con
eq : (M :Con) (A:Ty M B: Ty (T, A) -
r,A ,B=(T,ZrAB

data Ty where
¢ (T :Con) 5 Ty T
T (M :Con) (A:TyM »>Ty (T, A>Tyl

@ Category Ag of sorts.

Stefania Damato A container model of type theory

Functorial semantics, for QIITs [Altenkirch et al., 2018]

Example 1.1

data Con : Set
data Ty : Con » Set

data Con where

<o 1 Con
2 (M :Con) (A: Ty N » Con

eq: (M :Con) (A:Ty M (B: Ty (T, A) -
Wr,s ,B=(C,xrAB)

data Ty where
¢ (T :Con) 5 Ty T
T (M :Con) (A:TyM »>Ty (T, A>Tyl

@ Category Ag of sorts.
@ Constructor specification. The n" constructor is specified by

two functors
L,: A, — Set,

Rn: [L, — Set.

Stefania Damato A container model of type theory

Functorial semantics, for QIITs [Altenkirch et al., 2018]

Example 1.1

data Con : Set
data Ty : Con » Set

data Con where
© i Con
2 (T :Con) (A: Ty » Con
eq : (M :Con) (A:Ty M B: Ty (T, A) -
r,A ,B=(T,ZrAB

data Ty where
¢ (T :Con) 5 Ty T
T (M :Con) (A:TyM »>Ty (T, A>Tyl

@ Category Ag of sorts.
@ Constructor specification. The n'" constructor is specified by
two functors
L,: A, — Set,
Rn: [L, — Set.
© Category of algebras. A1 is the category having objects of
type (A : |Anl)(c: (x : LnA) = Rn(A, x)).

Stefania Damato A container model of type theory

Containerification

Goal: restrict

L,: A, — Set,
Rn: [L, — Set

to be container functors (+ other restrictions).

Stefania Damato A container model of type theory

Containerification

Goal: restrict

L,: A, — Set,
Rn: [L, — Set

to be container functors (+ other restrictions).

Definition

Given category C, a generalised container is a pair S : Set,
P:S—|C|

The extension functor [S < P]: C — Set is defined by

[S<PIX:=) (s:S)(C(Ps,X)).

Stefania Damato A container model of type theory

An overview of inductive types, revisited

Class of types Representation Category theory Type theoretic Universal
semantics normal form type
ordinary inductive functor initial algebras of containers W-type
types Set — Set endofunctors on
e.g.N: Set Set
inductive families functor initial algebras of indexed Wi-type
e.g. Fin: N — Set (I - Set) > (1 - Set) endofuntors on containers
Set/
QllTs sequence of functors L, initial object in last representations ?
e.g. Con : Set and R, and sequence of constructed constructed via (QW-type)
Ty : Con — Set categories of dialgebras category of generalised
dialgebras An containers

Stefania Damato

A container model of type theory

The container model

Categories with families

A category with families (CwF) consists of:

@ A category C, of contexts and context substitutions, having a
terminal object.

Stefania Damato A container model of type theory

Categories with families

A category with families (CwF) consists of:

@ A category C, of contexts and context substitutions, having a
terminal object.

@ A functor Ty: C°P — Set.

Stefania Damato A container model of type theory

Categories with families

A category with families (CwF) consists of:

@ A category C, of contexts and context substitutions, having a
terminal object.

@ A functor Ty: C°P — Set.
@ A functor Tm: (f Ty)°® — Set.

Stefania Damato A container model of type theory

Categories with families

A category with families (CwF) consists of:
@ A category C, of contexts and context substitutions, having a
terminal object.
@ A functor Ty: C°P — Set.
@ A functor Tm: (f Ty)°® — Set.
@ Foreveryl :|Cland A : Ty(I'),
e anobject.A : |C|

e amorphismp: T'A—>TinC
e and aterm g: Tm(I".A, A[p]),

with a certain universal property.

(—[f] denotes the action of Ty and Tm on a morphism f.)

Stefania Damato A container model of type theory

Presheaf model

@ Category Con whose
@ objects (contexts) are presheaves C°° — Set

Stefania Damato A container model of type theory

Presheaf model
@ Category Con whose

@ objects (contexts) are presheaves C°° — Set
e morphisms (substitutions) are natural transformations

Stefania Damato A container model of type theory

Presheaf model

@ Category Con whose
@ objects (contexts) are presheaves C°° — Set
e morphisms (substitutions) are natural transformations

e terminal object (empty context) is the constant 1 presheaf.

Stefania Damato A container model of type theory

Presheaf model

@ Category Con whose
@ objects (contexts) are presheaves C°° — Set
e morphisms (substitutions) are natural transformations
e terminal object (empty context) is the constant 1 presheaf.

@ Types in context I are presheaves over [T.

Ty: Con®® — Set
Tyl = () - Set

Stefania Damato A container model of type theory 10

Presheaf model

@ Category Con whose
@ objects (contexts) are presheaves C°° — Set
e morphisms (substitutions) are natural transformations

e terminal object (empty context) is the constant 1 presheaf.

@ Types in context I are presheaves over [T.
Ty: Con®® — Set
Tyl = () - Set

@ Terms in context I' of type A are dependent natural
transformations from I to A.

Tm: (f Ty)®® — Set

Tm(r,A) = fx_set(y TX) = A(X,7)

Stefania Damato A container model of type theory

Presheaf model

@ Category Con whose
@ objects (contexts) are presheaves C°° — Set
e morphisms (substitutions) are natural transformations
e terminal object (empty context) is the constant 1 presheaf.

@ Types in context I are presheaves over [T.
Ty: Con®® — Set
Tyl = () - Set

@ Terms in context I' of type A are dependent natural
transformations from I to A.

Tm: (f Ty)®® — Set

Tm(r,A) = fx-sﬂ(y TX) = A(X,7)

o Context extension (TA) X = > (y : T X)(A(X,)).

Stefania Damato A container model of type theory

Container model
@ Category Con whose

e objects (contexis) are set-containers S : Set, P: S — Set with
extension functor [S < P]: Set — Set

Stefania Damato A container model of type theory

Container model

@ Category Con whose
e objects (contexis) are set-containers S : Set, P: S — Set with
extension functor [S <« P]: Set — Set
e morphisms (substitutions) are container morphisms

Stefania Damato A container model of type theory

Container model

@ Category Con whose
e objects (contexis) are set-containers S : Set, P: S — Set with
extension functor [S <« P]: Set — Set
e morphisms (substitutions) are container morphisms
e terminal object (empty context) is 1<«0.

Stefania Damato A container model of type theory

Container model

@ Category Con whose
e objects (contexis) are set-containers S : Set, P: S — Set with
extension functor [S <« P]: Set — Set
e morphisms (substitutions) are container morphisms
e terminal object (empty context) is 1 <«0.
@ Types in context [are generalised containers S : Set,
P: S — | [Tl over [[IT, with extension functor

[S<P]: (JITT) — Set.

Stefania Damato A container model of type theory

Container model

@ Category Con whose
e objects (contexis) are set-containers S : Set, P: S — Set with
extension functor [S <« P]: Set — Set
e morphisms (substitutions) are container morphisms
e terminal object (empty context) is 1 <«0.

@ Types in context [are generalised containers S : Set,
P: S — | [Tl over [[IT, with extension functor

[S<P]: (JITT) — Set.

@ Terms in context I' of type A are dependent natural
transformations from [[I'] to [A].

Tm: (f Ty)® — Set

Tm (T, A) = fxset(y; IF1X) = [AN(X.7)

Stefania Damato A container model of type theory

Container model

@ Category Con whose
e objects (contexis) are set-containers S : Set, P: S — Set with
extension functor [S <« P]: Set — Set
e morphisms (substitutions) are container morphisms
e terminal object (empty context) is 1 <«0.
@ Types in context [are generalised containers S : Set,
P: S — | [Tl over [[IT, with extension functor

[S<PI: (/ITT) — Set.

@ Terms in context I' of type A are dependent natural
transformations from [[I'] to [A].

Tm: (f Ty)® — Set

Tn(rA) = [(1710 = TAI(X.)

@ Context extension
? (F.A)X:Z(F.S)(A.SA)</l(sr,sA).(A.PA)stA ?

Stefania Damato A container model of type theory 11

Presheaf model & container model

Presheaf model

e Contexts: C°P — Set

e Substitutions: natural
transformations

e Types: (JT)° — Set

e Terms:

Jesat 1 TX) = A(X,7)

Stefania Damato

Container model

e Contexts: Set — Set

e Substitutions: container
morphisms

e Types: ([[I']) — Set

e Terms:

Jse? 2 IF1X) = [AD(X.)

A container model of type theory

To-dos

@ Deal with coherence issues.

A container model of type theory

To-dos

@ Deal with coherence issues.
o Category of set-containers has a groupoid (as opposed to an
h-set) of objects.
— Add coherences to the CwF.
— Strictify objects via an inductive-recursive universe:
data U : Set where

nat : U
El : U > Set
El nat = N

Stefania Damato A container model of type theory

To-dos

@ Deal with coherence issues.
o Category of set-containers has a groupoid (as opposed to an
h-set) of objects.
— Add coherences to the CwF.
— Strictify objects via an inductive-recursive universe:
data U : Set where

nat : U
El : U > Set
El nat = N

e Strictify pullbacks and pushouts (e.g. when proving
Alf o g] = Alf][g])-

Stefania Damato A container model of type theory

To-dos

@ Deal with coherence issues.
o Category of set-containers has a groupoid (as opposed to an
h-set) of objects.
— Add coherences to the CwF.
— Strictify objects via an inductive-recursive universe:
data U : Set where

nat : U
El : U > Set
El nat = N

e Strictify pullbacks and pushouts (e.g. when proving
Alf o g] = Alf][g])-

@ For QIIT semantics, we need Con to be the category of
generalised containers (as opposed to set-containers).

Stefania Damato A container model of type theory

Related work

@ Thorsten Altenkirch and Ambrus Kaposi's TYPES abstract ‘A
container model of type theory’.

Stefania Damato A container model of type theory

Related work

@ Thorsten Altenkirch and Ambrus Kaposi's TYPES abstract ‘A
container model of type theory’.

@ Tamara von Glehn’s polynomial functor model using
comprehension categories.

Stefania Damato A container model of type theory

Related work

@ Thorsten Altenkirch and Ambrus Kaposi's TYPES abstract ‘A
container model of type theory’.

@ Tamara von Glehn’s polynomial functor model using
comprehension categories.

@ Bob Atkey and Andras Kovéacs’s implementation of the same
model as a CwF.

Stefania Damato A container model of type theory

Summary

@ QIITs combine set-truncated equalities with
induction-induction.

@ We can represent QlITs semantically as initial objects in a
category of algebras.

@ Containerification of QIIT semantics requires as a prerequisite
the ability to express any statement in type theory as a
container. This can be achieved by a container model of
type theory.

@ The container model is a restricted version of the presheaf
model.

Stefania Damato A container model of type theory 15

Summary

@ QIITs combine set-truncated equalities with
induction-induction.

@ We can represent QlITs semantically as initial objects in a
category of algebras.

@ Containerification of QIIT semantics requires as a prerequisite
the ability to express any statement in type theory as a
container. This can be achieved by a container model of
type theory.

@ The container model is a restricted version of the presheaf
model.

Thank you!

Stefania Damato A container model of type theory 15

References |

@ Altenkirch, T., Capriotti, P, Dijkstra, G., Kraus, N., and
Nordvall Forsberg, F. (2018).
Quotient inductive-inductive types.
In Baier, C. and Dal Lago, U., editors, FOSSACS, pages
293-310. Springer.

@ Altenkirch, T. and Kaposi, A. (2021).
A container model of type theory.
In TYPES 2021.

[§ Atkey, R. (2020).
Interpreting dependent types with containers.
Talk at the MSP101 seminar, University of Strathclyde, slides
athttps://bentnib.org/docs/tt-in-containers.pdf,
code at https://gist.github.com/bobatkey/
0d1£04057939905d35699f1b1c323736.

Stefania Damato A container model of type theory

https://bentnib.org/docs/tt-in-containers.pdf
https://gist.github.com/bobatkey/0d1f04057939905d35699f1b1c323736
https://gist.github.com/bobatkey/0d1f04057939905d35699f1b1c323736

References Il

[§ Kovacs, A. (2020).

Construction of the containers / polynomials cwf in agda.

Code athttps://gist.github.com/AndrasKovacs/
cf7cc88£667c8f0087a4981f6bedeef8.

[@ von Glehn, T. (2015).
Polynomials and models of type theory.
PhD thesis, University of Cambridge.

Stefania Damato A container model of type theory

https://gist.github.com/AndrasKovacs/cf7cc88f667c8f0087a4981f6be4eef8
https://gist.github.com/AndrasKovacs/cf7cc88f667c8f0087a4981f6be4eef8

