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Motivation:
modelling inductive types



Functorial semantics, for ordinary inductive types
data N : Set where

zero : N
succ : N > N
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succ: NV
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Functorial semantics, for ordinary inductive types

data N : Set where
zero : N
succ : N > N

)
zero: N'
succ: NV
)
zero x succ : N'+V

l

zeroxsucc:1+N->N

Stefania Damato A container model of type theory



Functorial semantics, for ordinary inductive types

data N : Set where
zero : N
succ : N > N

l

zero: N'

succ: NV

l

zero x succ : N'+V

l

zeroxsucc:1+N->N

8

Fy: Set — Set
Fa(X)=1+X
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Functorial semantics, for ordinary inductive types

data N : Set where data C : Set where
zero : N c: ((C->2)->2)>C
succ : N > N

l

zero: N'

succ: NV

l

zero x succ : N'+V

l

zeroxsucc:1+N->N
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Functorial semantics, for ordinary inductive types

data N : Set where data C : Set where
zero : N c: ((C->2)->2)>C
succ : N » N !

! c:((C-2)>2)>C
zero: N'

succ: NV

l

zero x succ : N'+V

l

zeroxsucc:1+N->N

8

Fy: Set — Set
Fa(X)=1+X
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Functorial semantics, for ordinary inductive types

data N : Set where data C : Set where
zero : N c: ((C->2)->2)>C
succ : N » N !
l c:((C-2)>2)>C
zero: N' 1
NN
succ: N Fc: Set — Set
) Fc(X)=(X—->2)—>2
zero x succ : N'+V
l
zeroxsucc:1+N->N
l
Fy: Set — Set
Fa(X)=1+X
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The W-type

data W (S : Set) (P : S » Set) : Set where
sup : (s : S) > (Ps->WSP)>WSP
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The W-type

data W (S : Set) (P : S » Set) : Set where
sup : (s : S) > (Ps->WSP)>WSP

N as a W-type
data N : Set where
zero : N

succ : N > N
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The W-type

data W (S : Set) (P : S » Set) : Set where
sup : (s : S) > (Ps->WSP)>WSP

N as a W-type
data N : Set where S=1+1
zero : N

succ : N > N

Stefania Damato A container model of type theory



The W-type

data W (S : Set) (P : S » Set) : Set where
sup : (s : S) > (Ps->WSP)>WSP

N as a W-type

data N : Set where S=1+1
zero : N
succ : N » N P(inlx):=0
P(inrx) =
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The W-type

data W (S : Set) (P : S » Set) : Set where
sup : (s : S) > (Ps->WSP)>WSP

N as a W-type

data N : Set where S=1+1
zero : N
succ : N » N P(inlx):=0
P(inrx) =
N=WSP.
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The W-type

data W (S : Set) (P : S » Set) : Set where
sup : (s : S) > (Ps->WSP)>WSP

data N : Set where S=1+1
zero : N
succ : N> N P(inl %) =0
P(inrx) =1
N =WSP.
Z:WSP

z = sup (inlx) (1())
S:WSP—>WSP
sn = sup (inrx) (1_.n)
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The W-type

data W (S : Set) (P : S » Set) : Set where
sup : (s : S) > (Ps->WSP)>WSP

N as a W-type
data N : Set where S=1+1
zero : N
succ : N> N P(inlx) =0
P(inrx) =1
N=WSP.
1+1
Z:WSP
z (inl %) (A()) S
‘= sup
./ 1+1
S:WSP > WSP
sn:=sup (inrx) (1-.n) ./ \‘
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Containers (a.k.a. polynomial functors)

A container is a pair S : Set, P: S — Set, written as S < P.
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Containers (a.k.a. polynomial functors)

A container is a pair S : Set, P: S — Set, written as S < P.

Extension functor [S < P]: Set — Set is defined by

[S<PIX:= ) (s:S)(Ps— X).
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Containers (a.k.a. polynomial functors)

A container is a pair S : Set, P: S — Set, written as S < P.

Extension functor [S < P]: Set — Set is defined by
[S<PIX:= ) (s:S)(Ps— X).

S=1+1 P(inlx) =0
P(inrx) =1
[S <P]: Set — Set
[S<PIX = (s:1+1)((A(inl %).0; (inr ).1) - X)
=1+ X
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Containers (a.k.a. polynomial functors)

A container is a pair S : Set, P: S — Set, written as S < P.

Extension functor [S < P]: Set — Set is defined by

[S<PIX:= ) (s:S)(Ps— X).

Containers enforce strict positivity
semantically.
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An overview of inductive types

Class of types Functor type Category theory Type theoretic Universal
semantics normal form type
ordinary inductive Set — Set initial algebras of containers W-type
types endofunctors on
e.g. N : Set Set
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An overview of inductive types

Class of types Functor type Category theory Type theoretic Universal
semantics normal form type
ordinary inductive Set — Set initial algebras of containers W-type
types endofunctors on
e.g. N : Set Set
inductive families (I - Set) —» (I > Set) initial algebras of indexed Wi-type
e.g. Fin: N — Set endofuntors on containers
Set/
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An overview of inductive types

Class of types Functor type Category theory Type theoretic Universal
semantics normal form type
ordinary inductive Set — Set initial algebras of containers W-type
types endofunctors on
e.g. N : Set Set
inductive families (1 - Set) —» (I > Set) initial algebras of indexed Wi-type
e.g. Fin: N — Set endofuntors on containers
Set/
QllTs ? ? ? ?
e.g. Con : Set,
Ty : Con — Set

Stefania Damato
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Quotient inductive-inductive types

QliTs = Quotient inductive types
~ | Inductive-inductive types
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Quotient inductive-inductive types

Quotient inductive types

QllTs = L .
Inductive-inductive types

Example 1.1: (Simplified) intrinsic syntax of type theory

data Con : Set
data Ty : Con > Set

data Con where
o : Con
_,_ (I : Con) (A: Ty ) » Con
eq : (' : Con) (A :Ty ) B : Ty (I, A) »
((r,An ,B=a,XTAB

data Ty where
t:(T:Con) »Ty Tl
Y : (T :Con) (A:TyDMND->Ty (T, A>Ty Tl
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Functorial semantics, for QIITS [Altenkirch et al., 2018]

Example 1.1

data Con : Set
data Ty : Con » Set

data Con where
© i Con
2 (T :Con) (A: Ty » Con
eq : (M :Con) (A:Ty M B: Ty (T, A) -
r,A ,B=(T,ZrAB

data Ty where
¢ (T :Con) 5 Ty T
T (M :Con) (A:TyM »>Ty (T, A>Tyl

@ Category Ag of sorts.
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Functorial semantics, for QIITs [Altenkirch et al., 2018]

Example 1.1

data Con : Set
data Ty : Con » Set

data Con where

<o 1 Con
2 (M :Con) (A: Ty N » Con

eq: (M :Con) (A:Ty M (B: Ty (T, A) -
Wr,s ,B=(C,xrAB)

data Ty where
¢ (T :Con) 5 Ty T
T (M :Con) (A:TyM »>Ty (T, A>Tyl

@ Category Ag of sorts.
@ Constructor specification. The n" constructor is specified by

two functors
L,: A, — Set,

Rn: [L, — Set.
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Functorial semantics, for QIITs [Altenkirch et al., 2018]

Example 1.1

data Con : Set
data Ty : Con » Set

data Con where
© i Con
2 (T :Con) (A: Ty » Con
eq : (M :Con) (A:Ty M B: Ty (T, A) -
r,A ,B=(T,ZrAB

data Ty where
¢ (T :Con) 5 Ty T
T (M :Con) (A:TyM »>Ty (T, A>Tyl

@ Category Ag of sorts.
@ Constructor specification. The n'" constructor is specified by
two functors
L,: A, — Set,
Rn: [L, — Set.
© Category of algebras. A1 is the category having objects of
type (A : |Anl)(c: (x : LnA) = Rn(A, x)).
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Containerification

Goal: restrict

L,: A, — Set,
Rn: [L, — Set

to be container functors (+ other restrictions).
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Containerification

Goal: restrict

L,: A, — Set,
Rn: [L, — Set

to be container functors (+ other restrictions).

Definition

Given category C, a generalised container is a pair S : Set,
P:S—|C|

The extension functor [S < P]: C — Set is defined by

[S<PIX:= ) (s:S)(C(Ps,X)).
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An overview of inductive types, revisited

Class of types Representation Category theory Type theoretic Universal
semantics normal form type
ordinary inductive functor initial algebras of containers W-type
types Set — Set endofunctors on
e.g.N: Set Set
inductive families functor initial algebras of indexed Wi-type
e.g. Fin: N — Set (I - Set) > (1 - Set) endofuntors on containers
Set/
QllTs sequence of functors L, initial object in last representations ?
e.g. Con : Set and R, and sequence of constructed constructed via (QW-type)
Ty : Con — Set categories of dialgebras category of generalised
dialgebras An containers

Stefania Damato
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The container model



Categories with families

A category with families (CwF) consists of:

@ A category C, of contexts and context substitutions, having a
terminal object.
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Categories with families

A category with families (CwF) consists of:

@ A category C, of contexts and context substitutions, having a
terminal object.

@ A functor Ty: C°P — Set.
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Categories with families

A category with families (CwF) consists of:

@ A category C, of contexts and context substitutions, having a
terminal object.

@ A functor Ty: C°P — Set.
@ A functor Tm: (f Ty)°® — Set.
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Categories with families

A category with families (CwF) consists of:
@ A category C, of contexts and context substitutions, having a
terminal object.
@ A functor Ty: C°P — Set.
@ A functor Tm: (f Ty)°® — Set.
@ Foreveryl :|Cland A : Ty(I'),
e anobject.A : |C|

e amorphismp: T'A—>TinC
e and aterm g: Tm(I".A, A[p]),

with a certain universal property.

(—[f] denotes the action of Ty and Tm on a morphism f.)
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Presheaf model

@ Category Con whose
@ objects (contexts) are presheaves C°° — Set
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Presheaf model
@ Category Con whose

@ objects (contexts) are presheaves C°° — Set
e morphisms (substitutions) are natural transformations
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Presheaf model

@ Category Con whose
@ objects (contexts) are presheaves C°° — Set
e morphisms (substitutions) are natural transformations

e terminal object (empty context) is the constant 1 presheaf.
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Presheaf model

@ Category Con whose
@ objects (contexts) are presheaves C°° — Set
e morphisms (substitutions) are natural transformations
e terminal object (empty context) is the constant 1 presheaf.

@ Types in context I are presheaves over [T.

Ty: Con®® — Set
Tyl = () - Set
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Presheaf model

@ Category Con whose
@ objects (contexts) are presheaves C°° — Set
e morphisms (substitutions) are natural transformations

e terminal object (empty context) is the constant 1 presheaf.

@ Types in context I are presheaves over [T.
Ty: Con®® — Set
Tyl = () - Set

@ Terms in context I' of type A are dependent natural
transformations from I to A.

Tm: (f Ty)®® — Set

Tm(r,A) = fx_set(y TX) = A(X,7)
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Presheaf model

@ Category Con whose
@ objects (contexts) are presheaves C°° — Set
e morphisms (substitutions) are natural transformations
e terminal object (empty context) is the constant 1 presheaf.

@ Types in context I are presheaves over [T.
Ty: Con®® — Set
Tyl = () - Set

@ Terms in context I' of type A are dependent natural
transformations from I to A.

Tm: (f Ty)®® — Set

Tm(r,A) = fx-sﬂ(y TX) = A(X,7)

o Context extension (TA) X = > (y : T X)(A(X,)).
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Container model
@ Category Con whose

e objects (contexis) are set-containers S : Set, P: S — Set with
extension functor [S < P]: Set — Set
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Container model

@ Category Con whose
e objects (contexis) are set-containers S : Set, P: S — Set with
extension functor [S <« P]: Set — Set
e morphisms (substitutions) are container morphisms
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Container model

@ Category Con whose
e objects (contexis) are set-containers S : Set, P: S — Set with
extension functor [S <« P]: Set — Set
e morphisms (substitutions) are container morphisms
e terminal object (empty context) is 1<«0.
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Container model

@ Category Con whose
e objects (contexis) are set-containers S : Set, P: S — Set with
extension functor [S <« P]: Set — Set
e morphisms (substitutions) are container morphisms
e terminal object (empty context) is 1 <«0.
@ Types in context [ are generalised containers S : Set,
P: S — | [Tl over [[IT, with extension functor

[S<P]: (JITT) — Set.
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Container model

@ Category Con whose
e objects (contexis) are set-containers S : Set, P: S — Set with
extension functor [S <« P]: Set — Set
e morphisms (substitutions) are container morphisms
e terminal object (empty context) is 1 <«0.

@ Types in context [ are generalised containers S : Set,
P: S — | [Tl over [[IT, with extension functor

[S<P]: (JITT) — Set.

@ Terms in context I' of type A are dependent natural
transformations from [[I'] to [A].

Tm: (f Ty)® — Set

Tm (T, A) = fxset(y; IF1X) = [AN(X.7)
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Container model

@ Category Con whose
e objects (contexis) are set-containers S : Set, P: S — Set with
extension functor [S <« P]: Set — Set
e morphisms (substitutions) are container morphisms
e terminal object (empty context) is 1 <«0.
@ Types in context [ are generalised containers S : Set,
P: S — | [Tl over [[IT, with extension functor

[S<PI: (/ITT) — Set.

@ Terms in context I' of type A are dependent natural
transformations from [[I'] to [A].

Tm: (f Ty)® — Set

Tn(rA) = [ (1710 = TAI(X.)

@ Context extension
? (F.A)X:Z(F.S)(A.SA)</l(sr,sA).(A.PA)stA ?
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Presheaf model & container model

Presheaf model

e Contexts: C°P — Set

e Substitutions: natural
transformations

e Types: (JT)° — Set

e Terms:

Jesat 1 TX) = A(X,7)

Stefania Damato

Container model

e Contexts: Set — Set

e Substitutions: container
morphisms

e Types: ([[I']) — Set

e Terms:

Jse? 2 IF1X) = [AD(X. )

A container model of type theory



To-dos

@ Deal with coherence issues.
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To-dos

@ Deal with coherence issues.
o Category of set-containers has a groupoid (as opposed to an
h-set) of objects.
— Add coherences to the CwF.
— Strictify objects via an inductive-recursive universe:
data U : Set where

nat : U
El : U > Set
El nat = N
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To-dos

@ Deal with coherence issues.
o Category of set-containers has a groupoid (as opposed to an
h-set) of objects.
— Add coherences to the CwF.
— Strictify objects via an inductive-recursive universe:
data U : Set where

nat : U
El : U > Set
El nat = N

e Strictify pullbacks and pushouts (e.g. when proving
Alf o g] = Alf][g])-
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To-dos

@ Deal with coherence issues.
o Category of set-containers has a groupoid (as opposed to an
h-set) of objects.
— Add coherences to the CwF.
— Strictify objects via an inductive-recursive universe:
data U : Set where

nat : U
El : U > Set
El nat = N

e Strictify pullbacks and pushouts (e.g. when proving
Alf o g] = Alf][g])-

@ For QIIT semantics, we need Con to be the category of
generalised containers (as opposed to set-containers).
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Related work

@ Thorsten Altenkirch and Ambrus Kaposi's TYPES abstract ‘A
container model of type theory’.
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Related work

@ Thorsten Altenkirch and Ambrus Kaposi's TYPES abstract ‘A
container model of type theory’.

@ Tamara von Glehn’s polynomial functor model using
comprehension categories.
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Related work

@ Thorsten Altenkirch and Ambrus Kaposi's TYPES abstract ‘A
container model of type theory’.

@ Tamara von Glehn’s polynomial functor model using
comprehension categories.

@ Bob Atkey and Andras Kovéacs’s implementation of the same
model as a CwF.
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Summary

@ QIITs combine set-truncated equalities with
induction-induction.

@ We can represent QlITs semantically as initial objects in a
category of algebras.

@ Containerification of QIIT semantics requires as a prerequisite
the ability to express any statement in type theory as a
container. This can be achieved by a container model of
type theory.

@ The container model is a restricted version of the presheaf
model.
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Summary

@ QIITs combine set-truncated equalities with
induction-induction.

@ We can represent QlITs semantically as initial objects in a
category of algebras.

@ Containerification of QIIT semantics requires as a prerequisite
the ability to express any statement in type theory as a
container. This can be achieved by a container model of
type theory.

@ The container model is a restricted version of the presheaf
model.

Thank you!
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References |

@ Altenkirch, T., Capriotti, P, Dijkstra, G., Kraus, N., and
Nordvall Forsberg, F. (2018).
Quotient inductive-inductive types.
In Baier, C. and Dal Lago, U., editors, FOSSACS, pages
293-310. Springer.

@ Altenkirch, T. and Kaposi, A. (2021).
A container model of type theory.
In TYPES 2021.

[§ Atkey, R. (2020).
Interpreting dependent types with containers.
Talk at the MSP101 seminar, University of Strathclyde, slides
athttps://bentnib.org/docs/tt-in-containers.pdf,
code at https://gist.github.com/bobatkey/
0d1£04057939905d35699f1b1c323736.

Stefania Damato A container model of type theory


https://bentnib.org/docs/tt-in-containers.pdf
https://gist.github.com/bobatkey/0d1f04057939905d35699f1b1c323736
https://gist.github.com/bobatkey/0d1f04057939905d35699f1b1c323736

References Il

[§ Kovacs, A. (2020).

Construction of the containers / polynomials cwf in agda.

Code athttps://gist.github.com/AndrasKovacs/
cf7cc88£667c8f0087a4981f6bedeef8.

[@ von Glehn, T. (2015).
Polynomials and models of type theory.
PhD thesis, University of Cambridge.

Stefania Damato A container model of type theory


https://gist.github.com/AndrasKovacs/cf7cc88f667c8f0087a4981f6be4eef8
https://gist.github.com/AndrasKovacs/cf7cc88f667c8f0087a4981f6be4eef8

