
Investigating Quotient Inductive-
Inductive Types

First year review report

Stefania Damato
supervised by Prof. Thorsten Altenkirch

& Dr Nicolai Kraus

School of Computer Science
Functional Programming Lab

University of Nottingham

July 2022

Abstract

Martin-Löf’s dependent type theory is a formal language for programming
and constructive mathematics. Inductive types are a central notion in this
language, and allow us to define types by specifying their constructors. Ho-
motopy type theory is a more recent development which interprets type
theory in a homotopy theoretic way, whereby types are seen as spaces and
the identity type is seen as the path space between two points. In this con-
text, inductive types are not only defined in terms of their elements (points),
but also in terms of their equalities (paths). These kinds of types are called
higher inductive types (HITs). My thesis will provide a starting point for
obtaining a general semantics for HITs. In particular, we look at quotiented
types allowing induction-induction, known as quotient inductive-inductive
types (QIITs).

Contents

1 Introduction 1
1.1 Research Topic . 1
1.2 Progress to Date . 2
1.3 Overview of the Report . 3

2 Prerequisites 4
2.1 Martin-Löf Type Theory . 4
2.2 Equality and HoTT . 5
2.3 Overview of Inductive Types 6
2.4 Category Theory . 10

2.4.1 Category of families 10
2.4.2 Category of elements 10
2.4.3 Ends . 10
2.4.4 The Yoneda Lemma 13
2.4.5 Initial Algebra Semantics of Inductive Types 14

3 Literature Review 17

4 Topics Studied 20
4.1 Containers . 20

4.1.1 Inductive Types . 20
4.1.2 Defining Containers 22
4.1.3 Categories of Containers 23
4.1.4 Initial Algebras and Terminal Coalgebras 36
4.1.5 Generalisations . 42

4.2 Models of type theory . 43

5 Future Work Plan 47
5.1 Container Model of Type Theory 47
5.2 Containerification of Semantics for (Q)IITs 49
5.3 Syntax for (Q)IITs . 52

Appendix Cubical Agda Code 54

1
Introduction

1.1 Research Topic

Martin-Löf type theory (MLTT) is a formal language developed to be used as
a foundation for constructive mathematics as well as a theory for program
construction via the propositions as types paradigm. One of the central
notions of this theory is defining types inductively, which allows us to de-
fine types by simply specifying their constructors in a strictly positive way.
Recent developments in homotopy theoretic interpretations of type theory
have lead to homotopy type theory (HoTT), which alters our definition of
an inductive type by not only viewing an inductive type as specified by its
elements (or points), but also by its equalities (or paths). Inductive types
in this context are called higher inductive types (HITs).

The main aim of my thesis will be to contribute towards the long-term goal of
providing semantics for HITs. Specifically, I will be focussing on degenerate
types of HITs called quotient inductive types (QITs), which allow path con-
structors up to first-order equality. I will also look at inductive-inductive
types (IITs), which allow a higher degree of dependency between sorts of
a given type. Combining these two together, we get quotient inductive-
inductive types (QIITs). Our approach will involve using containers to re-
strict existing work to strictly positive types.

HITs have been used in the literature to define computational notions such
as permutable trees and the syntax of type theory, as well as mathematical
notions such as the Cauchy real numbers, surreal numbers, and homotopical
structures like circles, spheres, and tori. Despite several uses of concrete
HITs in the literature, there is still some difficulty around giving a fully
general semantics and theoretical foundation for HITs, and particularly HITs

1

Chapter 1 1.2. Progress to Date

that allow induction-induction, or higher inductive-inductive types (HIITs).
My project aims to act as a starting point to fill this gap in the literature.

1.2 Progress to Date

The main focus of the first 10 months of my PhD was learning about con-
tainers, reinterpreting the existing literature on containers in a more type
theoretic way, and formalising properties of containers in Agda. I aim to
combine this work into a modern, introductory paper on containers in the
next few months. Details of my study into this area can be found in sec-
tion 4.1. A formalisation in cubical Agda of a proof that the container
extension functor J_K is full and faithful can be found in the appendix. I
am currently working on formalising another proof of this, the more type
theoretic version using the Yoneda lemma which is presented in section 4.1.3.

In order to understand the literature on HITs, containers, and models of
type theory, I learned a lot more about category theory and homotopy type
theory, which I only had a basic knowledge of prior to my PhD. Although I
have programmed in Agda before and used it for my master’s dissertation, I
had never used cubical Agda or path types. The fact we wanted to use the
cubical mode of Agda became clear early on since we want to study higher
inductive types, and we need some extensionality results that are provable
in cubical but would require postulating in vanilla Agda. Throughout this
year, I became familiar with this new way of viewing equality and using the
cubical mode of Agda, and am now able to use cubical Agda productively
to formulate and prove results.

I attended the Midlands Graduate School 2022 held in Nottingham, where
I followed courses on realizability, coalgebras, and HoTT with univalent
foundations, and also organised and chaired a participants’ talks session. I
also attended TYPES 2022 held in Nantes, where I listened to numerous
talks throughout the four-day conference, and after which I also attended
the first Dedukti school.

I have helped teach a number of undergraduate modules. In the first
semester, I helped out in weekly lab sessions and prepared and run weekly
tutorials for ‘COMP2009 Algorithms, Correctness, and Efficiency’. In the
second semester, I helped out in weekly lab sessions for the functional pro-

2

Chapter 1 1.3. Overview of the Report

gramming part of ‘COMP1009 Programming Paradigms’. I graded course-
work for both modules as well as for ‘COMP2012 Languages and Computa-
tion’.

I attended weekly Type Theory Cafe seminars where I learned about ongoing
research by my colleagues in the Functional Programming Lab and other
topics related to type theory. I contributed to one of the seminars by talking
about my studies on containers. I also attended weekly FP lunch sessions
where we usually listened to a short talk by someone from the lab, or tried
to solve a computer science related puzzle.

1.3 Overview of the Report

Chapter 2 presents an introduction to the general background of this report.
Namely, we introduce MLTT, equality and identity types, HoTT, classes of
inductive types, and some category theory background.

Chapter 3 reviews the related literature, and further contextualises and mo-
tivates our project.

Chapter 4 goes into detail about the topics studied over the past 10 months.
We cover containers and give a brief description of models of type theory.

Chapter 5 contains our plans for the rest of the PhD, and sets out clear
objectives and some explanation of how they can be achieved.

3

2
Prerequisites

This chapter gives an overview of the background material required for the
rest of this report. Throughout this report, we use C to denote a category
and |C| to denote the type of its objects. Whenever we leave out com-
position, associativity, and identity from the definition of a category, or
preservation of identity morphisms and composition from the definition of
a functor, it is because they follow in the obvious way. Set refers to the
category whose objects are (small) sets (having uniqueness of identity proofs
(UIP)) of type Set and whose morphisms are functions. We use Set to mean
Agda’s universe of types with UIP. > or 1 or {∗} denote the unit type and
⊥ or 0 denote the empty type. In cubical Agda code, we use Type to mean
cubical Agda’s universe of types. We use the symbol := when we are first
defining something.

2.1 Martin-Löf Type Theory

Per Martin-Löf’s type theory was designed as a foundational language for
constructive mathematics and programming, based on the Brouwer-Heyting-
Kolmogorov interpretation of logic. Being a type theory, this language iden-
tifies propositions with types, and the proofs of a proposition with the el-
ements of the type corresponding to the proposition. It differs from other
constructive type theories by introducing dependent types and offering a
novel approach to equality.

Martin-Löf’s formulations of type theory (Martin-Löf, 1971, 1972, 1982;
Martin-Löf and Sambin, 1984) include inductive definitions of, among oth-
ers, the set of natural numbers N, finite sets Fin(n), and the disjoint union
of two types A+ B. Inductive definitions are fundamental to modern type
theory and functional programming languages, and have been studied and

4

Chapter 2 2.2. Equality and HoTT

generalised extensively. An inductive type X is one which can be defined by
providing a list of constructors, each of which is a function (possibly having
zero arguments) with codomain X, specifying how to form elements of this
type. Our project focusses on the semantics of such inductive types, so we
give a summary of the different classes of inductive types in section 2.3.

2.2 Equality and HoTT

Martin-Löf type theory has two different kinds of equality. Definitional
equality is the stronger kind of equality, and is not a type per se but a
judgment in the metatheory of the language. In Agda code this is denoted by
=. On the other hand, propositional equality is a particular type constructor
Id : {A : Type} -> A -> A -> Type which relates two terms of the same
type. In Agda code this is denoted by ≡. Unlike definitional equality,
propositional equality can be treated like any other type in type theory.

To clarify this distinction, we provide some examples. When defining a
function f : N → N by f(x) = x+5, that f(2) and 7 are equal is definitional—
it is simply a matter of expanding out a definition. It would not make sense
to reason about this equality as a proposition. On the other hand, that
x + 5 is equal to 5 + x is a proposition that can be proved, and is hence a
propositional equality.

An intensional type theory treats the two equalities differently, but has some
undesirable qualities like making functional extensionality unprovable. One
workaround is to introduce it as an axiom, but this then introduces other
potential problems like breaking canonicity. An extensional type theory
extends intensional type theory with a reflection rule that essentially forces
propositional equality back into definitional equality:

Γ ` p : Idx y
Γ ` x ≡ y

This however makes Martin-Löf’s type theory undecidable so it is also un-
desirable.

Homotopy type theory (HoTT) is a relatively new field of study which pro-
poses a different view of equality. In this view, types are regarded as topo-
logical spaces and the identity type Id on two terms becomes the type of
paths between two objects in the space. Inductive types in HoTT are called

5

Chapter 2 2.3. Overview of Inductive Types

higher inductive types (HITs) as they not only allow the constructors to
produce points of the type being defined, but also elements of its identity
types, i.e. equalities.

2.3 Overview of Inductive Types

Simple types

Types with zero or more constructors, each of which can be non-recursive
or recursive.

Example 1: The unit type having one (non-recursive) constructor tt.

data > : Type where
tt : >

Example 2: The type of natural numbers à la Peano, specifying that 0 is a
natural number, and that if n is a natural number, then so is its successor
suc n.

data N : Type where
zero : N
suc : N → N

Example 3: The type of binary trees storing data in the leaves. Note that
this type has a parameter A (placed before the :) of the type of data to be
stored in the tree.

data Tree (A : Type) : Type where
leaf : A → Tree A
node : Tree A → Tree A → Tree A

The W -type is a canonical form for simple inductive types. It is the type
of well-ordered trees and is formed by providing a type A and a type B :
A -> Type indexed by A. To construct elements of Wx : AB(x), we use the
constructor

sup : (a : A) → (B(a) →Wx : AB(x)) →Wx : AB(x).

6

Chapter 2 2.3. Overview of Inductive Types

Similarly, the M -type is a canonical form for simple coinductive types, but
we will not be going into coinductive types here.

Dependent types (a.k.a. Inductive families a.k.a. Indexed in-
ductive types)

Types that depend on a value from an input.

Example 1: The type of vectors of length n having elements of type A.
Here, A is a parameter whereas N is an index (placed after the :). Vec A
defines a collection of types, as it encapsulates the definitions of the types
Vec A zero, Vec A (suc zero), Vec A (suc (suc zero)), and so on, as
opposed to a single type. Note how the target type of the constructors is
different.

data Vec (A : Type) : N → Type where
[] : Vec A zero
:: : {n : N} → A → Vec A n → Vec A (suc n)

A use case for such a type is being able to express finer requirements for our
code. Appending two vectors of length i and j, should result in a vector of
length i + j. This constraint can be expressed in the type of the append
function for vectors, but we cannot do the same for lists.

++v : {A : Type}{i j : N} → Vec A i → Vec A j → Vec A (i + j)
[] ++v y = y
(x :: xs) ++v y = x :: (xs ++v y)

Example 2: The type of finite sets of length n. For an n > 0, Finite n is
isomorphic to the type having elements {0, 1, · · · , n− 1}.

data Finite : N → Type where
f-z : {n : N} → Finite (suc n)
f-s : {n : N} → Finite n → Finite (suc n)

Mutual inductive types

Types with more than one sort, where the constructors of one sort can
make use of the other sort. Mutual inductive types can be rewritten as
simple types.

7

Chapter 2 2.3. Overview of Inductive Types

Example: The mutual definition of evens and odds. The two sorts are even
and odd. Note how odd appears in the definition of a constructor of even.

data even : Type
data odd : Type

data even where
e-zero : even
e-suc : odd → even

data odd where
e-suc : even → odd

Inductive-inductive types (IITs)

Types with more than one sort, of type A : Type, B : A -> Type, where
the constructors of B may refer to those of A and crucially, the constructors
of A may refer to those of B. (In general, IITs can have more than two sorts,
but these have been shown to be reducible to IITs with only two sorts.)

Example: The type of contexts and types defined within that context. This
is part of the syntax of type theory.

data Con : Type
data Ty : Con → Type

data Con where
� : Con
, : (Γ : Con) → Ty Γ → Con

data Ty where
ι : (Γ : Con) → Ty Γ
σ : (Γ : Con) (A : Ty Γ) (B : Ty (Γ , A)) → Ty Γ

Quotient Inductive types (QITs)

Types that have not only point constructors as we have seen so far, but also
path constructors of equalities on the type. These path constructors are
only allowed to be first order equalities (and not higher order), so that the
inductive types defined are h-sets.

8

Chapter 2 2.3. Overview of Inductive Types

Example: The type of permutable trees, which are N-branching trees mod-
ulo permutations of subtrees. (Note that we do not have a set-truncation
constructor, but a set-truncation is implicitly included in the statement
PermTree : Set, ensuring that PermTree is an h-set.)

data PermTree : Set where
leaf : PermTree
node : (N → PermTree) → PermTree
perm : (f : N → PermTree) (g : N → N) → isIso g →

(node f) ≡ node (f ◦ g)

Quotient Inductive-Inductive Types (QIITs)

Types that combine the last two classes together, i.e. types that allow
induction-induction as well as first order equalities.

Example: The same Con Ty example given for IITs, except we rewrite Con
as shown below. Now Con= Ty uses both induction-induction and first order
path constructors.

data Con= where
� : Con=
, : (Γ : Con=) → Ty Γ → Con=
eq : (Γ : Con=) (A : Ty Γ) (B : Ty (Γ , A)) → ((Γ , A) , B) ≡ (Γ , σ A B)

Higher inductive types (HITs)

Types that allow point constructors and path constructors up to any level
of equality, i.e. allowing higher order equalities. QITs can be considered
degenerate HITs.

Example: The type of the circle defined as a HIT. Note how the last con-
structor constructs an equality (or path). The points on the circle are repre-
sented by the different proofs of base ≡ base, that is, loop, loop ◦ loop,
loop−1◦ loop ◦ loop, etc.

data S¹ : Set where
base : S¹
loop : base ≡ base

9

Chapter 2 2.4. Category Theory

2.4 Category Theory

This section aims to introduce several category theory notions to be used
later on in the report. We presuppose some very basic category theory defi-
nitions such as categories, functors, natural transformations, isomorphisms,
and terminal objects—a good starting point to these from a mathemati-
cal perspective can be found in Leinster (2016), while Milewski (2018) and
Altenkirch (2019) provide a more computer scientific perspective. For a
category C we denote its type of objects by |C| and its type of morphisms
between objects A and B by C(A,B), or sometimes f : A→ B.

2.4.1 Category of families

The category of families of sets, denoted by Fam, is defined as follows.

• Objects are pairs (A, (Ba)a:A), where A is a set and Ba is an A-indexed
family of sets B : A→ Set.

• Morphisms (A, (Ba)a:A) → (A′, (B′
a′)a′:A′) are pairs (f, g) where f : A→

A′ and g : (a : A) → Ba → B′
f a.

2.4.2 Category of elements

Given a functor F : C → Set, the category of elements denoted by ∫ F , is
defined as follows.

• Objects are pairs of type ((c : |C|), F c).

• Morphisms (c, Fc) → (d, Fd) are pairs (u, f) where u : c → d and
f : (F u)Fc = Fd.

2.4.3 Ends

In order to make precise some notation used in the next section and in later
chapters, we need to define ends. We start off by defining profunctors, which
can be thought of as bifunctors that are contravariant on the first argument
and covariant on the second.

Definition 2.1. Given a category C, a profunctor1 F : Cop × C → Set is
1We define a special case of profunctors here, namely the ones in terms of just one

category as opposed to two.

10

Chapter 2 2.4. Category Theory

defined as follows:

• Given objects c, d in C, F maps them to an object F (c, d) in Set.

• Given morphisms f : c → c′ and g : d → d′ in C, F maps them to a
morphism F (f, g) : F (c′, d) → F (c, d′) in Set.

The conditions for identity and composition are given by F (idc, idd) =

idF (c,d), and for c1
g′−→ c2

g−→ c3 and d1
f ′−→ d2

f−→ d3, F ((g ◦ g′), (f ◦ f ′)) =

F (g, f ′) ◦ F (g′, f) respectively. ■

An end is a generalisation of a limit of a functor. Similarly to how a limit
of a functor is a universal cone, an end of a profunctor is a universal wedge.

Definition 2.2. Given a profunctor F : Cop × C → Set, a wedge on F is
an object X : Set and a family of morphisms χc : X → F (c, c) for each c in
C, such that for any morphism f : c→ c′, the below diagram commutes.

X

F (c, c) F (c′, c′)

F (c, c′)

χc χc′

F idc f F f idc′

■

Definition 2.3. Given a profunctor F : Cop × C → Set, an end of F is a
universal wedge on F , i.e. an object E and a family of morphisms ϵc : E →
F (c, c), such that any other wedge X and χc : X → F (c, c) factors through
E via a unique map h as shown below.

X

E

F (c, c) F (c′, c′)

F (c, c′)

χc χc′

h

ϵc ϵc′

F idc f F f idc′

■

11

Chapter 2 2.4. Category Theory

Example 2.4. If C is a locally small category (i.e. all of its homsets are
small sets), then we can define the profunctor

HomC(−,−) : Cop × C → Set
HomC(c, c′) : Set

HomC(c, c′) := C(c, c′)

HomC(c
f−→ c′, d

g−→ d′) : HomC(c′, d) → HomC(c, d′)

HomC(c
f−→ c′, d

g−→ d′)h := g ◦ h ◦ f

Now consider functors F,G : C → D. We can define the functor NatF,G.

NatF,G : Cop × C → Set
NatF,G(c, c′) : Set

NatF,G(c, c′) := D(F c,G c′)

NatF,G(c
f−→ c′, d

g−→ d′) : D(F c′, G d) → D(F c,Gd′)

NatF,G(c
f−→ c′, d

g−→ d′)h := Gg ◦ h ◦ F f

Then note that a wedge on NatF,G is an object W : Set and a family of
morphisms χc : W → NatF,G(c, c), such that we have

W

NatF,G(c, c) = D(F c,G c) NatF,G(c′, c′) = D(F c′, G c′)

NatF,G(c, c′)

χc χc′

NatF,G(idc,f) NatF,G(f,idc′)

Now note that for h1 : D(F c,G c) and h2 : D(F c′, G c′),

NatF,G(idc, f)h1 = Gf ◦ h1 ◦ F idc
= Gf ◦ h1 functoriality of F

NatF,G(f, idc′)h2 = G idc′ ◦ h2 ◦ F f

= h2 ◦ F f functoriality of G

12

Chapter 2 2.4. Category Theory

and by substituting χc for h1 and χc′ for h2, the commutative diagram above
gives us that

Gf ◦ χc = χc′ ◦ F f.

This is precisely the naturality condition required for a natural transforma-
tion between F and G. So the family of morphisms χc represents a natural
transformation, and its commutative diagram is the naturality condition
required.

Since a wedge of NatF,G represents a natural transformation from F to G,
an end of NatF,G represents the set of all natural transformations from F to
G.

For a profunctor F , we use the notation EndF =
∫
c F (c, c). Hence, we

can represent the set of natural transformations from F to G, denoted by
[C,D](F,G), as

[C,D](F,G) = End NatF,G =

∫
c
NatF,G(c, c) =

∫
c
D(F c,G c).

This integral notation will be used in the next subsection as well as in
section 4.1.

2.4.4 The Yoneda Lemma

A very important category theory result that will also be used extensively
in section 4.1 is the Yoneda lemma. Although the standard presentation of
the Yoneda lemma is its contravariant version, here we present the covariant
version as it is the one we predominantly use.

The Yoneda lemma is a statement about representable functors, so we start
off by defining them.

Definition 2.5. Let C be a locally small category and A an object in C.
The covariant hom functor HA of type

HA := C(A,−) : C → Set

is defined as follows:

• for B : |C|,HA(B) = C(A,B),

13

Chapter 2 2.4. Category Theory

• for map B
g−→ B′ in C , define

HA(g) = C(A, g) : C(A,B) → C(A,B′)

HA(g) p := g ◦ p

for p : C(A,B). ■

Definition 2.6. A functor X : C → Set is called representable if X ∼= HA

for some A in C. ■

Theorem 2.7. (Yoneda lemma) Consider a locally small category C. Take
an object A in C and a functor F : C → Set. Then the set of natural
transformations from HA = C(A,−) to F is isomorphic to the set of F (A)s:

[C,Set] (HA, F) ∼= F (A)

naturally in A and F .

Throughout the rest of the report, the notation we will use for the Yoneda
lemma is ∫

X:Set
((A→ X) → F X) ∼= FA,

with the integral notation introduced in section 2.4.3, as this is closer to
how we think about it type theoretically.

Intuitively, the Yoneda lemma states that from a representable functor, you
can get to any other Set-valued functor F via natural transformations, and
that this set of natural transformations (which could potentially be very
big) is in fact very limited, and can be obtained by evaluating F at the
‘representer’ A.

2.4.5 Initial Algebra Semantics of Inductive Types

This subsection outlines how in the categorical semantics of type theory, an
inductive type is interpreted as the initial algebra of an endofunctor.

First, we illustrate how to obtain the endofunctor associated to an inductive
type. As an example we look at the type of natural numbers N.

14

Chapter 2 2.4. Category Theory

data N : Type where
zero : N
suc : N → N

This type is entirely described by its two constructors zero : N and suc :

N → N. In order to represent the two constructors as functions z and s
respectively, we can rewrite zero as a function from the unit type {∗}, so
we obtain

z : {∗} → N

s : N → N.

We can now view z and s as morphisms in the category Set, where {∗} is
a terminal object and will therefore be represented henceforth as 1. This
being a Cartesian closed category allows us to rewrite the morphisms using
exponentials

z : N1

s : NN

followed by products to describe them as a single pair

z × s : N1 × NN

followed by some basic algebra which holds in any Cartesian closed category,
along with going back to morphism notation

z × s : N1+N

z × s : 1 + N → N.

The left hand side of the resultant type corresponds to an endofunctor Set →
Set, which takes a set X to the sum 1 +X:

F : Set → Set
F X = 1 +X.

15

Chapter 2 2.4. Category Theory

We have therefore obtained the endofunctor F over Set associated to the
inductive type N. Given F , we can now consider F -algebras (A,α) where
A : Set is the carrier set and α : F A → A represents constructors of the
carrier. In this case, α : 1+A→ A. We can form the category of F -algebras,
where one such algebra would be the carrier set Bool with constructors
true : Bool and not : Bool → Bool, where not is the usual boolean
negation. Whenever F is an endofunctor corresponding to a strictly positive
inductive type, the category of F -algebras has an initial object called the
initial algebra, (I, ι). (I, ι) is initial if for any other F -algebra (A,α), there
is a unique morphism iterα : I → A such that the below commutes.

F I I

F A A

F (iterα)

ι

iterα

α

By Lambek’s lemma, ι : F I → I is not merely a morphism but an isomor-
phism, making F I ∼= I, and I a fixed point of F . The initial algebra (I, ι)

corresponds exactly to the inductive type—in our example, I would be N
and ι would be the pairing of zero and suc. We write that N ∼= µX.1+X,
where µ is a partial operator on functors, taking an endofunctor F to the
carrier set of its initial algebra. The morphism iterα is the iterator for I, and
combined with the fact that it is unique, this corresponds to the elimination
principle (or the dependent eliminator) for I.

16

3
Literature Review

This chapter further introduces the context of our project, by surveying
existing related literature and locating our work within it.

The main goal of our thesis is to contribute towards providing semantics for
higher inductive types (HITs) in HoTT. Despite there already being a lot
of work in the literature making use of HITs (e.g. Brunerie (2016); Licata
and Shulman (2013)), they still lack a general specification and theoreti-
cal foundations. Several approaches have been proposed (e.g. Lumsdaine
and Shulman (2019)) but a precise definition of what a higher inductive
type is in general is still an open problem. As a first step towards clos-
ing this gap, we will work on giving semantics for set-truncated HITs with
induction-induction, known as quotient inductive-inductive types (QIITs).
These types generalise normal inductive types in two ways. First, they allow
the use of point constructors as well as path constructors up to first order
equalities, meaning that these types ignore any higher equalities and possess
the uniqueness of identity proofs property. Secondly, they allow the use of
induction-induction, which introduces a higher dependency in a type’s defi-
nition, and allows constructors of one sort to refer to constructors of another
sort mutually.

Simple inductive types and inductive families

Simple inductive types (like the type N of natural numbers and the type
List A of lists of type A) and inductive families (like the type Vec A n of
vectors of type A and length n) already enjoy fully developed semantics. A
well known result due to Dybjer (1996) extends Martin-Löf’s encoding of the
natural and ordinal numbers using W-types to an encoding of any inductive
type represented by a strictly positive endofunctor on the category of sets.
This establishes W-types as the universal type for simple inductive types.

17

Chapter 3

Abbott et al. (2005) show that (n-ary) containers are a normal form for
simple inductive types, and use them to generalise Dybjer’s result to nested
inductive types and provide a more complete description of the categorical
infrastructure involved. Later, Altenkirch and Morris (2009) introduce in-
dexed containers as a normal form for inductive families, and show that any
inductive family can be represented as an indexed W-type, thereby identi-
fying a universal type for inductive families. They also show that indexed
W-types can be reduced to W-types.

The situation for (Q)IITs

A similar well-established theoretical foundation for inductive-inductive types
(IITs) and QIITs has not yet been found. The first obstacle we face in for-
malising IITs is that due to the dependency we allow between constructors
of different sorts, we have no way of expressing IITs by endofunctors, un-
like the cases of simple inductive types and inductive families. This means
that we cannot express their semantics as an initial algebra over a functor.
Altenkirch et al. (2018) remedy this for the even more general case of QI-
ITs. They specify a way to still represent QIITs using an algebra, but an
algebra in a more general sense than what we usually mean (an F -algebra
for a functor F). The algebra is constructed incrementally by adding one
constructor at a time (where each constructor is represented by a functor),
until once all the constructors are added, the QIIT can be obtained as the
initial object of the resultant algebra. While this work sets out a general
method for specifying IITs and QIITs, the specification is still too broad
as it allows non-strictly positive types. Therefore, we want to improve on
this work via ‘containerification’, i.e. we restrict the functors representing
the constructors being added to container functors (as well as adding some
other restrictions), thereby only allowing strictly positive definitions.

Container model of type theory

Since a constructor is an expression in type theory and we want to write
this as a container, we need to be able to interpret any expression in type
theory as a container. This means that before we can start working on the
‘containerification’ of the above work, we need to construct a model of type
theory using containers. This idea has already been set out in an abstract
by Altenkirch and Kaposi (2021), but the details of this have yet to be

18

Chapter 3

worked out. von Glehn (2015) has presented a polynomial functor model
of type theory using comprehension categories as notion of model. The
same model was also presented by Atkey (2020) and Kovács (2020) using
categories with families (CwFs) as notion of model. We plan on constructing
a container model of type theory using CwFs, which has the same contexts
and substitutions as the latter two but different types and terms.

A new syntax for (Q)IITs

After working out the full details of the container model of type theory and
providing a full semantics for strictly positive IITs and QIITs, we want to
analyse the syntax given rise to by this semantics. We expect this syntax to
be a refinement of the theory of signatures presented by Kaposi et al. (2019).
This syntax treats extending the arguments of a constructor the same way
it treats extending the constructors of a type: using type dependency. The
syntax resulting from our ‘containerified’ semantics will treat these two ex-
tensions differently, thereby giving rise to an alternative syntax for QIITs,
which we conjecture will be complete for our semantics, i.e. if a type cannot
be expressed within our syntax, then it is not a part of our semantics. If this
is the case, then the syntax would constitute a universal QIIT, which would
already be a significant achievement towards our long-term goal of provid-
ing a general specification for QIITs. Since such a universal QIIT would be
a fairly complicated type, the next step would be to try and simplify it as
much as possible, and to come up with a so-called QW-type, which would
be a succinct type to which all strictly positive QIITs could be reduced, in
much the same way that all strictly positive simple types can be reduced to
W-types.

19

4
Topics Studied

In view of the literature surveyed in chapter 3, it became clear that to be
able to start working on my research goals, I needed to carry out more
in-depth study in two main areas, namely containers and models of type
theory. This chapter summarises my studies and expands on chapter 3 by
going into further detail on these two topics.

4.1 Containers

Over the years, containers have been used in various contexts to solve dif-
ferent problems. Our current interest is applying them to get a semantics
for HITs. In this section we will motivate, define, and analyse the properties
of containers.

Most of this section’s content is an adaptation of proofs given in Abbott
et al. (2005), however we take a much more type theoretic approach, while
theirs is more category theoretic. In certain cases we give different proofs to
theirs, we provide examples, and supplement our proofs with Agda code of
non-trivial proof steps. The discussion and proof on container exponentials
was adapted from Altenkirch et al. (2010).

4.1.1 Inductive Types

Informally, a (simple) inductive type X is one which can be defined by pro-
viding a list of constructors, each of which is a function (possibly having zero
arguments) with codomain X, specifying how to form elements of this type.
The simplest example is the set of natural numbers N, whose constructors
are zero and suc. This specification of a (simple) inductive type is however
pretty general, and allows us to define types that we can not make sense

20

Chapter 4 4.1. Containers

of predicatively. For example, we are allowed to define an ‘inductive type’
Contra shown below.

data Contra : Type where
c : ((Contra → Bool) → Bool) → Contra

First of all, we cannot make sense of such a definition semantically. When
talking about inductive types, we think of them as being defined ‘in stages’,
e.g. for the natural numbers N, the only element we can construct at first is
zero, then in the second step, we can use this element and construct a new
element suc n for n being zero, then in the next step we can use this latest
constructed element, and so on. In the case of Contra, we do not have
a starting point of constructing a first element, so we cannot understand
it semantically. Moreover, these types of definitions lead to contradictions
when making certain assumptions (such as classical logic), and they admit
non-terminating functions (in fact, Agda does not allow us to define such a
type).

The condition we would like to impose to avoid such definitions is roughly
that for an inductive type X, we allow X to occur in the input types of
its constructors, but only to the right of arrows (→) (The Univalent Foun-
dations Program, 2013). For example, we allow constructors like c : (N →
X) → X for the type X, but not d : (X → N) → X or e : ((X → N) →
N) → X.

Inductive types that obey the condition explained above are called strictly
positive types, and they can be defined inductively as follows.

Definition 4.1. A strictly positive type in n variables, having type variables
X1, . . . , Xn, can be built up inductively by the following rules (Abel and
Altenkirch, 2000):

• if K is a type with no type variables, i.e. is a constant type, then K

is a strictly positive type

• every type variable Xi, for 1 ≤ i ≤ n, is a strictly positive type

• if F and G are strictly positive types, then their product F × G and
their coproduct F +G are strictly positive types

21

Chapter 4 4.1. Containers

• if K is a constant type and F is a strictly positive type, then K → F

is a strictly positive type

• if F is a strictly positive type in n+1 variables, then µX.F and νX.F
are strictly positive types in n variables ■

While this provides a syntactic definition of strictly positive inductive types,
we are still missing a semantic description. The initial algebra semantics of
inductive types discussed in Section 2.4.5 provides us a general way of talk-
ing about the initial algebra of an endofunctor corresponding to an inductive
type, but it does not tell us which endofunctors actually have initial alge-
bras, i.e. which endofunctors correspond to inductive types that are strictly
positive. This is the problem containers aim to address, namely, they are
a canonical form for strictly positive inductive types and therefore give us
a semantic description of them. Endofunctors arising from containers are
precisely those corresponding to strictly positive inductive types.

4.1.2 Defining Containers

Now that we have motivated the need for containers, we define what a
container is.

Definition 4.2. A (unary) container is given by a pair of types S : Set and
P : S → Set, which we write as S ◁ P . ■

The idea is that we can fully represent a strictly positive inductive type by
its ‘shapes’ and ‘positions’, where S is the type of shapes and P is the type
of positions indexed by S, which to every shape assigns the set of positions
at which data can be stored. To make better sense of this definition, we
define the extension of a container, also known as a container functor.

Definition 4.3. A container functor associated to a container S ◁ P is a
functor naturally isomorphic to the functor JS ◁ P K : Set → Set with the
following actions on objects and morphisms.

• Given an X : Set, JS ◁ P KX :=
∑

(s : S)(Ps→ X).

• Given X,Y : Set and a morphism f : X → Y ,

JS ◁ P K f : JS ◁ P KX → JS ◁ P KY.
22

Chapter 4 4.1. Containers

Given s : S and g : Ps→ X,

JS ◁ P K f (s, g) := (s, f ◦ g).

That JS ◁ P K preserves identity morphisms follows from JS ◁ P K id (s, g) =
(s, g), and that it preserves composition follows from JS ◁ P K (f ◦ h) (s, g) =
(s, (f◦h)◦g) = (s, f◦(g◦h)) = JS◁P K f (s, h◦g) = (JS◁P K f)◦(JS◁P Kh) (s, g)
by associativity of morphisms in Set. ■

The container functor associated to S ◁ P maps a type X to a choice of
shape s : S and for every position P s associated to s, a value of type X to
be stored at that position.

Example 4.4. The container representation of the list data type shown
below

data List (A : Type) : Type where
[] : List A
:: : A → List A → List A

is given by (n : N) ◁ (Finn). The shape of a list is a natural number n : N
representing its length, and given a length n, the positions of a list are the
elements of a finite set of size n, Finn. The container functor associated to
(n : N) ◁ (Finn) as defined in definition 4.3 allows us to represent concrete
lists. For example, the list of Chars [‘h’, ‘e’, ‘l’, ‘l’, ‘o’] is represented as∑

(5 : N)((0 → ‘h’; 1 → ‘e’; 2 → ‘l’; 3 → ‘l’; 4 → ‘o’) : Fin 5 → Char).

We will show later (example 4.19) that the container functor associated
to List is isomorphic to the carrier set of the initial algebra over List’s
endofunctor, i.e.

J(n : N) ◁ (Finn)KA ∼= µX.1 +A×X.

4.1.3 Categories of Containers

Now that we have defined containers and container functors, we can view
them as objects in two different categories, related by the functor J_K.

23

Chapter 4 4.1. Containers

Cont [Set, Set]

S ◁ P T ◁ Q

u◁f

J_K
JS ◁ P K JT ◁ QK

Ju◁fK

Definition 4.5. The category of (unary) containers, which we refer to here-
after as Cont, is defined as follows:

• Objects are (unary) containers as defined in definition 4.2, i.e. pairs
S : Set and P : S → Set, written as S ◁ P .

• Morphisms (S ◁ P) → (T ◁ Q) are pairs u : S → T and f : (s : S) →
Q (u s) → P s, written as u ◁ f .

■

Note how a morphism between containers is a function on shapes, together
with a function that assigns to every target position a source position. This
definition makes sense as is it always possible to pinpoint a target position’s
source, but not vice versa.

Example 4.6. The tail function on lists can be represented as a container
morphism from the list container (n : N) ◁ (Finn) to itself, by defining the
following.

u-lst : N → N
u-lst zero = zero
u-lst (suc n) = n

f-lst : (n : N) → Fin (u-lst n) → Fin n
f-lst zero r = r
f-lst (suc n) r = fsuc r

The interesting cases are when the length n 6= 0, as the tail of the empty
list is the empty list. u-lst represents the length of a list decreasing by

24

Chapter 4 4.1. Containers

1 when taking its tail, while f-lst represents the index of a specific entry
increasing by one when going from the tail to the original list.

In this example, we would not have been able to assign a target position
to every source position. In particular, the head of the list has no target
position.

Now that we have defined the category of containers, we are interested in
relating a container S ◁P to its functorial interpretation JS ◁P K. We do this
by defining the container extension functor J_K.
Definition 4.7. The container extension functor J_K : Cont → [Set,Set]
is defined as follows:

• Given an object S ◁P in Cont, this is mapped to its container functorJS ◁ P K as defined in definition 4.3.

• Given a morphism (u◁f) : (S◁P) → (T ◁Q) in Cont, this is mapped to
the natural transformation Ju◁fK : JS◁P K → JT ◁QK with componentsJu ◁ fKX : JS ◁ P KX → JT ◁ QKX for any X : Set, defined as

Ju ◁ fKX (s, h) := (u s, λ q → h(f s q)),

for s : S and h : P s→ X.

We say that a functor F : Set → Set is a container functor if it is nat-
urally isomorphic to some functor JS ◁ P K for a container S ◁ P (refer to
definition 4.3). ■

Our motivation for containers was to provide a semantic representation for
strictly positive functors. The natural next step is to think about mappings
between these functors, which are natural transformations as defined in def-
inition 4.7. The corresponding notion for containers is container morphisms
as seen in definition 4.5. Rather surprisingly, there is a bijective correspon-
dence between natural transformations on container functors and their rep-
resentation as container morphisms. This means that every (polymorphic)
function between strictly positive inductive types is uniquely representable
as a container morphism. This correspondence can be shown by proving
that the container extension functor J_K is full and faithful.

25

Chapter 4 4.1. Containers

Theorem 4.8. The functor J_K : Cont → [Set,Set] is full and faithful.

Proof. We need to show that given containers S ◁ P and T ◁ Q, there is a
bijection between Cont(S ◁ P, T ◁ Q) and [Set,Set](JS ◁ P K, JT ◁ QK). So
assume X : Set.∫

X:Set
(JS ◁ P KX → JT ◁ QKX)

=

∫
X:Set

(
∑

(s : S)(P s→ X) → JT ◁ QKX) expanding definition ofJS ◁ P KX
∼=

∫
X:Set

((s : S) → (P s→ X) → JT ◁ QKX) currying in Set:
Π((ΣAB)C) ∼= Π(A (ΠBC))

∼= (s : S) →
∫
X:Set

((P s→ X) → JT ◁ QKX)
∫

and Π commute

∼= (s : S) → JT ◁ QK (P s) covariant Yoneda lemma: for
F : Set → Set, A : Set,∫
X:Set(A→ X,F X) ∼= F A

= (s : S) →
∑

(t : T)(Qt→ P s) expanding definition ofJT ◁ QKX
∼=

∑
(f : S → T)((s : S) → Q(f s) → P s) type theoretic axiom of choice

(see below)

= (S ◁ P) → (T ◁ Q) definition of container mor-
phism

The type theoretic axiom of choice used in the penultimate step refers to
the following.

tt-aoc : {A : Type} {B : A → Type} {C : (a : A) → B a → Type} →
Iso ((a : A) → Σ (B a) (λ b → C a b))

(Σ ((a : A) → B a) (λ f → (a : A) → C a (f a)))
tt-aoc = iso

(λ f → (λ a → fst (f a)) , λ a → snd (f a))
(λ {(f , g) → λ a → f a , g a})
(λ _ → refl)
(λ _ → refl)

26

Chapter 4 4.1. Containers

The above gives us a bijection between morphisms (S ◁ P) → (T ◁ Q) in
Cont and morphisms JS ◁ P K → JT ◁ QK in [Set,Set].

Example 4.9. Consider functors F X := Xm and GX := Xn. Written
as containers, F is represented by (1 ◁ Finm) and G by (1 ◁ Finn). Then
there is a bijection between natural transformations Xm =⇒ Xn and
functions (u ◁ f) with u : 1 → 1 and f : Finn→ Finm, which is isomorphic
to functions n→ m. We know that there are precisely mn of the latter, so we
can conclude that there are also mn natural transformations Xm =⇒ Xn.

We now turn our attention to the category Cont and look at its closure
properties, namely, we show that it is closed under products, coproducts,
composition, and exponentials.

Products and Coproducts

First of all, since we are considering functors Set → Set and since their
category has products and coproducts, we can show that (a) J_K preserves
them, and as a result that (b) Cont inherits them from [Set,Set].

Theorem 4.10. When considering container functors of type Set → Set,
the following hold.

1. The container extension functor J_K preserves products and coprod-
ucts.

2. Cont inherits finite products and coproducts from [Set,Set].

Proof. Since J_K is a fully faithful functor of type Cont → [Set,Set], then
if we show that products and coproducts of container functors in [Set,Set]
are themselves container functors (i.e. that J_K preserves products and co-
products), we can reflect them to products and coproducts in Cont alongJ_K.

27

Chapter 4 4.1. Containers

1. We first compute the product of container functors. Assume X : Set.

JS ◁ P KX × JT ◁ QKX
=

∑
(s : S)(P s→ X)×

∑
(t : T)(Qt→ X)

∼=
∑

((s, t) : S × T)(P s+Qt→ X)

= J((s, t) : S × T) ◁ (P s+Qt)KX
The crucial step from the second line to the third line is the following
isomorphism.

Σ-comm : {A C D : Type} {B : A → Type} {E : D → Type} →
Iso (Σ (Σ A (λ a → B a → C))

(λ _ → Σ D (λ d → E d → C)))
(Σ (Σ A (λ _ → D)) (λ ad → B (fst ad)] E (snd ad) → C))

Σ-comm = iso (λ {((a , f) , (d , g)) → (a , d) , λ {(inl b) → f b ; (inr e) → g e}})
(λ {((a , d) , f) → (a , λ b → f (inl b)) , (d , λ e → f (inr e))})
(λ {((a , d) , f) →

ΣPathP (refl , funExt λ {(inl b) → refl ; (inr e) → refl})})
(λ _ → refl)

Next, we compute the coproduct of container functors. Again assume
X : Set.

JS ◁ P KX + JT ◁ QKX
=

∑
(s : S)(P s→ X) +

∑
(t : T)(Qt→ X)

∼=
∑

(b : Bool)(b = true →
∑

(s : S)(P s→ X);

b = false →
∑

(t : T)(Qt→ X))

∼=
∑

(
∑

(b : Bool)(b = true → s : S; b = false → t : T))

(λ (true, s) → P s→ X; (false, t) → Qt→ X)

∼=
∑

(S + T)(λ (inl s) → P s→ X; (inr t) → Qt→ X)

= J(S + T) ◁ (λ (inl s) → P s; (inr t) → Qt)KX
We make use of the fact that A+B ∼=

∑
(b : Bool)(b = true → A; (b =

false) → B) twice throughout the proof. From the third to the fourth
line, we make use of the below isomorphism.

28

Chapter 4 4.1. Containers

Σ-assoc : {A : Type} {B : A → Type} {C : Σ A B → Type} →
Iso (Σ A (λ a → Σ (B a) (λ Ba → C (a , Ba))))

(Σ (Σ A B) C)
Σ-assoc = iso (λ {(a , (b , c)) → (a , b) , c})

(λ {((a , b) , c) → a , (b , c)})
(λ _ → refl)
(λ _ → refl)

We have shown that J_K preserves products and coproducts by showing
that products and coproducts of container functors are themselves
container functors.

2. We now give a more detailed explanation and proof as to why Cont
inherits products and coproducts from [Set,Set] along J_K. We illus-
trate the case for products; the case for coproducts follows similarly.

For any two containers C = S ◁ P and C ′ = T ◁ Q, define

(S ◁ P) ×̃ (T ◁ Q) = ((s, t) : S × T) ◁ (P s+Qt)

as given by our computation in part 1, as an object in Cont. We will
show that ×̃ is in fact the product in Cont by showing the universal
property of the product, i.e. that for any container D,

Cont(D,C ×̃C ′) ∼= Cont(D,C) ×̃Cont(D,C ′).

Cont(D,C ×̃C ′)

∼= [Set,Set](JDK, JC ×̃C ′K) J_K full and faithful
∼= [Set,Set](JDK, JCK × JC ′K) J_K preserves products
∼= [Set,Set](JDK, JCK)× [Set,Set](JDK, JC ′K) [Set,Set] has products
∼= Cont(D,C) ×̃Cont(D,C ′) J_K full and faithful

This shows that Cont has products as defined by reflecting our com-
puation in part 1 along J_K, and similarly it has coproducts:

(S ◁ P) × (T ◁ Q) = ((s, t) : S × T) ◁ (P s+Qt),

29

Chapter 4 4.1. Containers

(S ◁ P) + (T ◁ Q) = (S + T) ◁ (λ (inl s) → P s; (inr t) → Qt).

Composition

We now look at what happens when composing containers. If JS ◁ P K, JT ◁
QK : Set → Set and X : Set, then we can consider (JS ◁ P K ◦ JT ◁ QK)X =JS ◁ P K ◦ (JT ◁ QKX) of type Set. We show that this is itself a container
functor and obtain a definition for composition in Cont.

Theorem 4.11. When considering container functors of type Set → Set,J_K preserves composition.

Proof. Assume X : Set.

(JS ◁ P K ◦ JT ◁ QK)X
= JS ◁ P K ◦ (JT ◁ QKX)

=
∑

(s : S)(P s→
∑

(t : T)(Qt→ X)) definition of J_K
∼=

∑
(s : S)(

∑
(f : P s→ T)((p : P s) → Q(f p) → X))

tt-aoc
∼=

∑
(
∑

(s : S)(f : P s→ T))((p : P s) → Q(f p) → X)
Σ-assoc

= J(∑(s : S)(f : P s→ T)) ◁ ((p : P s) → Q(f p))KX definition of J_K

We therefore define container composition as

(S ◁ P) ◦ (T ◁ Q) = (
∑

(s : S)(f : P s→ T)) ◁ ((p : P s) → Q(f p)).

Example 4.12. By the definition above, the container representation of
List (List A) type, where A : Set is the type of entries of the nested list,
is as follows:

C = (
∑

(n : N)(f : Finn→ N)) ◁ ((p : Finn) → Fin (f p)).

The shape of the above container is precisely J(n : N) ◁ (Finn)KN ∼= ListN.
The length of this list represents the length of the outer list, and its entries

30

Chapter 4 4.1. Containers

represent the length of each of the inner lists. The positions then assign
data to each of the slots dictated by the lengths.

For example, the list [[‘a’, ‘b’], [], [‘c’]] of type List (List Char) is repre-
sented by ∑

(
∑

(3)(λ{0 → 2;

1 → 0;

2 → 1}))
λ{0 → λ{0 → ‘a’; 1 → ‘b’}

1 → λ()

2 → λ{0 → ‘c’}}

of type JCK Char.

Exponentiation

The last closure property of Cont we look at is exponentiation. First of
all, we note that for two functors F and G in [Set,Set], their exponential
GF does not necessarily exist. For assume that it does exist. Then we can
compute what kind of form it will have. Assume A : Set.

31

Chapter 4 4.1. Containers

GF (A)

∼=
∫
X:Set

(A→ X) → GF (X) covariant Yoneda lemma

∼= [Set,Set]((A→ _), GF) natural transformations are mor-
phisms in [Set,Set]

∼= [Set,Set]((A→ _)× F,G) uncurrying: since we assume the
exponential GF exists, we have
[Set,Set](X,ZY) ∼= [Set,Set](X ×
Y, Z)

∼=
∫
X:Set

(A→ X)× F (X)→G(X) morphisms in [Set,Set] are natural
transformations

∼=
∫
X:Set

(A→ X) → F (X) → G(X) currying: since Set has exponen-
tials, we have Set(X × Y, Z) ∼=
Set(X,ZY) ∼= Set(X,Y → Z)

Since GF (A) must be of type Set (size wise, i.e. it must be of type Set0)
and it is isomorphic to

∫
X:Set(A → X) → F (X) → G(X), then the latter

must also have type Set. However, there are cases where the homset from a
functor F to a functor G is larger than a Set. For example, in the category
of classical sets,

∫
X:Set P(X) → P(P(X)), where P is the covariant powerset

functor, is not a Set.

It was already shown in Abbott et al. (2005) that containers are closed under
exponentiation by constant containers. A constant container is of the form
(K ◁ 0) whose extension functor is a constant functor equal to K. Abbott
et al. (2005) computed K → JF KX in [Set,Set] and then reflected it alongJ_K to define

FK = (f : K → S) ◁ (
∑

(k : K)(P (f k)))

for container F = S ◁ P and constant container K.

Altenkirch et al. (2010) extended on this result by showing that Cont has

32

Chapter 4 4.1. Containers

all exponentials, thereby proving that it is Cartesian closed. The proof goes
as follows.

We first note that exponentiating with a container having shape 1 (i.e.
a representable functor) is straightforward. Consider F in [Set,Set] and
P,X : Set.

(F J1◁P K)X
∼=

∫
Y :Set

(X → Y) → J1 ◁ P KY → F Y calculation above of exponential

∼=
∫
Y :Set

(X → Y) → (P → Y) → F Y definition of container functor

∼=
∫
Y :Set

(X → Y)× (P → Y) → F Y uncurrying in Set

∼=
∫
Y :Set

(X + P → Y) → F Y (X → Y) × (P → Y) ∼= (X + P →
Y)

∼= F (X + P) covariant Yoneda lemma

F (X + P) is indeed a Set since F is an endofunctor on Set, so this compu-
tation is valid.

We also note that

JS ◁ P KX =
∑

(s : S)(P s→ X)

∼=
∑

(s : S)(J1 ◁ P sKX)

∼= J∑(s : S)(1 ◁ P s)KX coproduct of arbitrarily many con-
tainer functors is closed under J_K:∑

(i : I)J(s : Si) ◁ Pi sKX ∼=J∑(i : I)((s : Si) ◁ Pi s)KX
and since J_K is full and faithful, we can reflect along it to obtain an iso-
morphism betwen S ◁ P and the coproduct of containers S (which can be

33

Chapter 4 4.1. Containers

written as a container (S ◁ 0)) and 1 ◁ P s

S ◁ P ∼=
∑

(s : S)(1 ◁ P s).

So now if F : Set → Set, we can calculate

F JS◁P K
∼= F J∑(s:S)(1)◁P sK isomorphism above
∼= F

∑
(s:S)J1◁P sK closure of coproducts under J_K

∼= Π(s : S)(F J1◁P sK) C
∑
(i:I)(Ai) ∼= Π(i : I)(CAi) (a gen-

eralisation of CA+B ∼= CA × CB to
i many) in [Set,Set]

∼= Π(s : S)(F (_ + P s)) result above of exponentiating with
a container having shape 1

where F (_ + P s) is defined by (F (_ + P s))X = F (X + P s).

Hence F JS◁P K ∼= Π(s : S)(F (_ + P s)), and when F : Set → Set is a con-
tainer functor i.e. of the form JT ◁ QK, the right hand side is a container
functor by the closure properties of container functors seen previously in
this section. Hence we have the following result.

Theorem 4.13. J_K preserves exponentiation on functors of type Set →
Set.

We can reflect exponentiation in Set → Set to Cont to obtain a definition
for exponentiation of containers. When expanding the definition above for
F = T ◁ Q, we get

T ◁ QS◁P = (
∑

(f : S → T)(g : (s : S) → Q(f s) → 1 + P s)) ◁

(
∑

(s : S)(
∑

(q : Q(f s))(g s q = inl tt → ⊥)))

Given that Cont has a terminal object 1 ◁ 0, products, and exponentials,
this makes Cont a Cartesian closed category. Altenkirch et al. (2010) show
that it is not locally Cartesian closed. However, contrary to what is said in
the paper, this does not mean that the category of containers cannot be a

34

Chapter 4 4.1. Containers

model of type theory. Indeed, the category of setoids is not locally Cartesian
closed, however it is still a model of type theory. Local Cartesian closure is
stronger of a requirement than we need for a category to be a model of type
theory.

So far, we have been looking at the simplest version of containers—unary
containers, the ones having functors of type Set → Set representing induc-
tive types with at most 1 type variable (like N with 0 type variables, List
A with 1 type variable). In order to move forward and in particular to be
able to reason about fixed points of containers, we need to define containers
with multiple parameters. Before we do this, we summarise what we have
so far.

Going back to our original goal of representing strictly positive inductive
types by containers, from the results and closure properties of Cont that
we have seen so far, we can give an interpretation of any non-inductive
strictly positive type in 1 variable as a container.

Theorem 4.14. Every non-inductive strictly positive type in 1 variable
can be interpreted as a container.

Proof. Let K be a constant type (i.e. has no type variables) and let F and
G be strictly positive inductive types represented by containers (S ◁ P) and
(T ◁ Q) respectively. Then we have the following container interpretations.

K 7→ (K ◁ 0)

F +G 7→ ((S + T) ◁ (λ (inl s) → P s; (inr t) → Qt))

F ×G 7→ (((s, t) : S × T) ◁ (P s+Qt))

K → F 7→ ((f : K → S) ◁ (
∑

(k : K)(P (f k))))

The next section details how we can extend theorem 4.14 to the full range
of strictly positive types (definition 4.1), i.e. give a container interpretation
of types in n variables and types that are inductive.

35

Chapter 4 4.1. Containers

4.1.4 Initial Algebras and Terminal Coalgebras

An important property of the category of containers is that it is closed
under taking the least and greatest fixed points. This allows us to represent
inductive and coinductive types using containers. In order to be able to talk
about fixed points, we introduce a slightly more general kind of container,
one with multiple parameters.

We now redefine the category of containers and the container extension
functor for containers in multiple parameters, or n-ary containers. These
‘new’ definitions are very close to the previous ones, only with minor adjust-
ments to account for an indexing set, hence we overload the notation used
previously. Similarly, the constructions in section 4.1.3 still hold for these
containers, with a few adjustments.

Definition 4.15. Given an index set I, the category of containers in I

parameters, which we denote ContI , is defined as follows:

• Objects are pairs S : Set and P : I → S → Set, written as S ◁ P .

• Morphisms (S ◁ P) → (T ◁ Q) are pairs u : S → T and f : (s : S) →
(Qi (u s)) → (P i s). ■

Definition 4.16. The container extension functor J_K : ContI → [Setn,Set]
(where n = |I|) is defined as follows:

• Given an object (S ◁ P) in ContI , this is mapped to the functorJS ◁ P K : Setn → Set defined below.

– Given an object X : Setn, JS ◁ P KX :=
∑

(s : S)((i : I) →
P i s→ Xi).

– Given X,Y : Setn, a morphism f : X → Y , s : S, and g : (i :

I) → P i s→ Xi,

JS ◁ P K f (s, g) := (s, λ i→ fi ◦ (g i)).

• Given a morphism (u◁f) : (S◁P) → (T◁Q) in ContI , this is mapped to
the natural transformation Ju◁fK : JS◁P K → JT ◁QK with components

36

Chapter 4 4.1. Containers

Ju ◁ fKX : JS ◁ P KX → JT ◁ QKX for any X : Setn, defined as

Ju ◁ fKX(s, h) := (u s, λ i q → h i (fi s q)),

for s : S and h : (i : I) → Qi (u s) → P i s. ■

Here we consider I to be a finite set, but it is possible to generalise these
developments to the infinite case.

Having defined the above, we can now get back to thinking about fixed
points of containers. We want to show that if F (X, Y) is a container functor
Setn+1 → Set for X : Setn and Y : Set, then µY.F (X, Y) and νY.F (X, Y)

are also container functors Setn → Set. µ and ν are partial operators taking
a functor F to the object part of its initial algebra µF or terminal coalgebra
νF , if they exist (this was discussed in more detail in section 2.4.5).

Consider F in ContI+1. Then F can be written as (S ◁ P,Q) for S : Set,
P : I → S → Set, and Q : S → Set, and has extension

JF K(X, Y) =
∑

(s : S)((i : I) → P i s→ Xi)× (Qs→ Y).

To show µY.F (X, Y) and νY.F (X, Y) are container functors with respect to
X, we need to compute (Aµ ◁Bµ) and (Aν ◁Bν) such that µY.JF K(X, Y) ∼=JAµ ◁ BµKX and νY.JF K(X, Y) ∼= JAν ◁ BνKX.

Computing Aµ and Aν is relatively straightforward. Note that since Aµ is
the shape of the container (Aµ ◁Bµ), we can write it as JAµ ◁BµK 1 =

∑
(a :

Aµ)(Bµa→ 1) ∼= Aµ. So we have

Aµ ∼= JAµ ◁ BµK 1
∼= µY.JF K(1, Y)

∼= µY.
∑

(s : S)(Qs→ Y)

= µY.JS ◁ QKY
∼=W SQ.

Similarly we get
Aν ∼=M SQ.

Now we need to compute W SQ ` Bµ and M SQ ` Bν . We show the

37

Chapter 4 4.1. Containers

process for computing Bµ. In the rest of this construction, for the sake of
simplicity we ignore the index set I and consider P : S → Set, when we
should strictly speaking consider P : I → S → Set (equivalently, we will be
assuming I = 1). It is straightforward to generalise the construction here to
the setting where we have more than 1 parameter, i.e. I 6= 1.

Let G = (A ◁B) in ContI . Then we can compose the container functors of
F and G, denoted by JF K[JGK], as follows.

SetI (id,JGK)−−−−−→ SetI × Set ∼= SetI+1 JF K−−→ Set

We can then lift this to a functor on containers −[−] : ContI+1 ×ContI →
ContI defined by:

F [G] = (S ◁ P,Q)[A ◁ B]

:= (s : S)(f : Qs→ A) ◁ (P s+
∑

(q : Qs)(B(f q))).

We need such a G to be the required fixed point for F , i.e. we would like
to find a G such that F [G] ∼= G. Now observe that an isomorphism ψ : JS ◁
QKA ∼= A induces an isomorphism F [G] ∼= G. This is because

JF [G]K 1 ∼= (s : S)(f : Qs→ A) = JS ◁ QKA
and JGK 1 ∼= A, hence ψ is an isomorphism of shapes of F [G] and G, i.e.
ψ : JF [G]K 1 ∼= JGK 1. Then what does an isomorphism of positions of F [G]
and G look like? It is a family of isomorphisms

s : S, f : Qs→ A ` ϕs,f : (P s+
∑

(q : Qs)(B(f q))) ∼= B(ψs,f).

So an isomorphism between F [G] and G must be of the form

(ψ, ϕ−1) : F [G] → G

(we had to invert ϕ due to the definition of container morphisms, see defi-
nition 4.5).

In order to obtain such an isomorphism, we will need a pair (B,ϕ) to be an
initial family over ψ, i.e. a family a : Aµ ` B(a) equipped with a morphism

38

Chapter 4 4.1. Containers

ϕs,f : (P s+
∑

(q : Qs)(B(f q))) ∼= B(ψs,f) as above, which is initial in the
category of such families and morphisms. Then by Lambek’s lemma, the
morphism ϕ we obtain will be an isomorphism.

While we do not go into the proof’s details here, Abbott et al. (2005) show
that given a container F = (S ◁ P,Q) in ContI+1, A : Set, and a fixed
point ψ : JS ◁QKA ∼= A, there exists an initial family (A◁Posψ) over ψ, and
Posψ (sup s f) = P s+

∑
(q : Qs)(Posψ (f q)).

Hence we set Bµ (sup s f) to Posψ = P s+
∑

(q : Qs)(Bµ(f q)), and we get
one of the two main results.

Theorem 4.17. Given a container F = (S ◁ P,Q) in ContI+1, we have
that JW SQ ◁ PosψKX ∼= µY.JF K(X, Y).

Moreover, writing µF :=W SQ ◁ Posψ, we get that µJF [−]K ∼= JµF K, so by
reflection along J_K we get that ContI is closed under least fixed points.

Computing Bν is slightly more involved but we get a similar result, shown
below.

Theorem 4.18. Given a container F = (S ◁ P,Q) in ContI+1, we have
that JM SQ ◁ PosψKX ∼= νY.JF K(X, Y).

Moreover, writing νF :=M SQ ◁ Posψ, we get that νJF [−]K ∼= JνF K, so by
reflection along J_K we get that ContI is closed under greatest fixed points.

Example 4.19. We will use the constructions discussed in this section to
work out the container functor of the List data type.

An inductive type is the initial algebra over a functor representing its sort(s)
and constructor(s). To this end, the functor representing the sort and con-
structors of List is

LAX = 1 +A×X,

where A is the type of entries of the list. The List data type itself is

39

Chapter 4 4.1. Containers

represented by the fixed point of this functor, namely

LµA = µX.(1 +A×X).

Our aim is to show that Lµ is a container functor with respect to A, by
coming up with an Aµ and a Bµ such that

LµA = µX.JLK(A,X) ∼= JAµ ◁ BµKA.
Following our general construction, we write L as the container (S ◁ P,Q)

in Cont2, with S, P , and Q being the following.

S : Set

S = >+>

P : S → Set

P (inl tt) = ⊥

P (inr tt) = >

Q : S → Set

Q(inl tt) = ⊥

Q(inr tt) = >

S represents the possible constructors one can choose from, P tells us how
many As a constructor has, and Q tells us how many Xs a constructor has.

We set Aµ to be W SQ, which is

W SQ =W (>+>)(λ {(inl tt) → ⊥; (inr tt) → >})
∼=W (Bool)(λ {(false) → ⊥; (true) → >})
∼= N.

So Aµ is set to N, with constructors sup (inl tt) (λ ()) (for zero) and
sup (inr tt) (λ {tt → n}) for n of type W SQ (for succ).

40

Chapter 4 4.1. Containers

Now we set Bµ (sup s f) to P s+
∑

(q : Qs)(Bµ(f q)). We compute:

Bµ (sup (inl tt) (λ ())) = P (inl tt) +
∑

(q : Q(inl tt))(Bµ(λ()))
∼= ⊥+⊥
∼= ⊥

Bµ (sup (inr tt) (λ tt → n)) = P (inr tt) +
∑

(q : Q(inr tt))(Bµ((λ {tt → n}) q))
∼= >+>×Bµ(n)

∼= >+Bµ(n)

So Bµ (zero) = ⊥ and Bµ (succ n) = >+Bµ(n). Hence Bµ ∼= Fin.

Hence we have that LµA = µX.JLK(A,X) ∼= J(n : N) ◁ (Finn)KA.

We end this section with our initial motivation—an extended version of
theorem 4.14 covering the full range of strictly positive types.

Theorem 4.20. Every strictly positive inductive type in n variables can
be interpreted as a container.

Proof. We already saw how to interpret constant types, products, coprod-
ucts, and arrow types in theorem 4.14. The remaining cases needed to cover
all the cases of definition 4.1 are given below.

Let F be a strictly positive inductive type represented by the container
(S ◁ P,Q), and let Xi be a type variable. Then we have the following
container interpretations.

Xi 7→ (1 ◁ (if i = j then> else⊥))

µX.F 7→ (W SQ ◁ Posψ)

νX.F 7→ (M SQ ◁ Posψ)

41

Chapter 4 4.1. Containers

4.1.5 Generalisations

In this section, we primarily looked at unary containers, which allow one
parameter and represent functors on the category of sets, Set → Set:

FN : Set → Set

FNX := 1 +X,

as well as n-ary containers allowing a finite number n of parameters, repre-
senting functors Setn → Set:

FList : (A : Set) → Set → Set

FListAX := 1 +A×X.

Further generalisations of containers exist in the literature. One such gen-
eralisation is indexed containers (Altenkirch and Morris (2009), Altenkirch
et al. (2015)), which represent functors on the category of families indexed
by a (possibly infinite) indexing type I (see section 2.4.1), (I → Set) →
(I → Set), used for inductive families:

FVec : (A : Set) → (N → Set) → (N → Set)

FVecAX n := (n ≡ 0) + (m : N)× (n ≡ sucm)× (A×Xm).

Indexed containers generalise ordinary and n-ary containers presented in
this section, and can be seen as the type theoretic equivalent of dependent
polynomial functors (Gambino and Hyland, 2004). They were shown to be a
normal form for strictly positive families in much the same way as containers
are a normal form for strictly positive types.

Indexed containers are themselves a special case of generalised containers,
which represent representable functors over an arbitrary category C, having
the form C → Set (to get indexed containers, set C = (I → Set) × I). A
generalised container is written as S ◁P with S : Set and P : S → |C|. Such
a container functor would be defined by JS ◁ P KX :=

∑
(s : S)(C(P s,X))

for X : |C|. Generalised containers are the kind of containers we will need
for the ‘containerification’ of the semantics of (Q)IITs.

In summary, we have the following types of containers, starting from the

42

Chapter 4 4.2. Models of type theory

least general to the most general.

container type container functor type example
ordinary Set → Set N : Set

n-ary Setn → Set List A : Set
indexed (I → Set) → (I → Set) Vec A : N → Set

generalised C → Set representable functors

4.2 Models of type theory

A type theory is a formal system in which we can derive certain kinds of
judgments. Some examples of type theories are the simply-typed lambda
calculus, the calculus of constructions, and Martin-Löf type theory. We
define a type theory by listing its kinds of judgments and their syntax, and
listing the derivation rules that can be used in proofs (or derivations) of the
judgments.

Example 4.21. We have the following two judgments in Martin-Löf type
theory.

Γ ` Γ is a valid context

Γ ` A A is a valid type in context Γ

These judgments are used in the derivation rules for forming new contexts,
among many other derivation rules.

emp
� `

Γ ` Γ ` A comp
Γ.A `

Developing a notion of semantics for dependent type theories is desirable
mainly because it is easier to show that a mathematical structure is a type
theory by proving it is an instance of this semantics, than by formulating
an interpretation function for it directly. To this end, many different no-
tions of a model of type theory have been proposed over the years, such as
Cartmell’s contextual categories (Cartmell, 1986), Jacobs’s comprehension
categories (Jacobs, 1993), and Dybjer’s categories with families or CwFs
(Dybjer, 2003). A model constitutes a sound semantics for a type theory,

43

Chapter 4 4.2. Models of type theory

i.e. an interpretation of the type theory such that any judgment that can be
derived in the type theory can also be derived in the semantics.

We present the notion of model that we are interested in, namely CwFs. We
feel that this notion of model is the most naturally related to the syntax of
type theory, and is less categorical than other notions. Our definition and
discussion are adapted from Dybjer (2003), Hofmann (1997), and Kaposi
(2013).

Definition 4.22. A category with families (CwF) consists of:

• A category C whose objects interpret contexts and whose morphisms
interpret context morphisms, having a terminal object interpreting the
empty context.

• A functor T : Cop → Fam that interprets types and terms. If Γ : |C|,
then we write

T (Γ) = (Ty(Γ), Tm(Γ, ·)).

If γ : Γ → ∆, then

T (γ) : (Ty(∆), Tm(∆, ·)) → (Ty(Γ), Tm(Γ, ·))

T (γ)(A, a) = (A[γ], a[γ])

where A[γ] interprets type substitution and a[γ] interprets term sub-
stitution.

• A context comprehension operation which associates to every Γ : |C|
and A : Ty(Γ)

– an object Γ.A : |C|

– a morphism p : Γ.A→ Γ in C,

– and a term q : Tm(Γ.A,A[p]),

such that given a context ∆ : |C|, a context morphism γ : ∆ → Γ,
and a term a : Tm(∆, A[γ]), there exists a unique context morphism
θ : ∆ → Γ.A, denoted by θ = 〈γ, a〉, such that p ◦ θ = γ and q[θ] =

a. ■

We note that there are several equivalent ways of defining a CwF. One
such alternative is that instead of defining one functor T : Cop → Fam

44

Chapter 4 4.2. Models of type theory

to interpret types and terms, we define two functors Ty : Cop → Set and
Tm : (∫ Ty)op → Set. This is the approach used in section 5.1.

The definition of CwFs encapsulates all the rules of type theory for context
formation and substitution and congruence of definitional equality.

Example 4.23. The set model of type theory is defined as follows.

• The base category C is set to the category of sets and functions Set,
so that contexts are sets and context morphisms are functions. The
terminal object is the set with one element {∗} or 1, and this represents
the empty context.

• The functor Ty : Setop → Set is defined on objects and morphisms as

Ty(Γ) : Set

Ty(Γ) := Γ → Set

Ty(∆
σ−→ Γ): Ty(Γ) → Ty(∆)

Ty(∆
σ−→ Γ)A := A ◦ σ,

with A ◦ σ : Ty(∆) = ∆ → Set.

• The functor Tm : (∫ Ty)op → Set is defined on objects as

Tm(Γ, A) : Set

Tm(Γ, A) := (γ : Γ) → Aγ.

Before we define Tm on morphisms, we look at the objects and mor-
phisms of the category (∫ Ty)op.

– Objects are pairs (Γ : Set, T y(Γ)).

– A morphism (Γ, A) → (∆, B) is a morphism f : ∆ → Γ and a
proof p : (Ty f)A = B, and by the definition of Ty on morphisms,
this reduces to p : A ◦ f = B.

So for f : ∆ → Γ and p : A ◦ f = B, Tm is defined on morphisms as

Tm((Γ, A)
(f,p)−−−→ (∆, B)) : Tm(Γ, A) → Tm(∆, B)

Tm((Γ, A)
(f,p)−−−→ (∆, B)) a := λδ → a(f δ),

45

Chapter 4 4.2. Models of type theory

where a : (γ : Γ) → Aγ, and δ : ∆. a(f δ) is of type A (f δ) =

(A ◦ f) δ = B δ by p, as required.

Note: Alternatively, we could view morphisms in (∫ Ty)op as f : ∆ →
Γ of type (Γ, A) → (∆, A ◦ f). Then

Tm((Γ, A)
f−→ (∆, A ◦ f)) : Tm(Γ, A) → Tm(∆, A ◦ f)

Tm((Γ, A)
f−→ (∆, A ◦ f)) a := λδ → a(f δ),

with a(f δ) : (A ◦ f) δ as required.

• The context comprehension operation associates to a Γ : Set and an
A : Ty(Γ) the set Γ.A of pairs (ρ : Γ, u : Aρ). Then p : Γ.A → Γ is
defined by the first projection out of Γ.A, and q : Tm(Γ.A,Ap) by the
second projection.

46

5
Future Work Plan

In chapter 3, I surveyed the most relevant literature to my thesis and iden-
tified three main goals for the course of my PhD. I will restate these goals
here, and provide more details about each one.

My primary aim is to contribute towards the long-term goal of providing
semantics for inductive types in HoTT, called HITs. To this end, a realis-
tic starting point is considering a subset of HITs, namely those types that
are defined with their equalities, but whose higher equalities are quotiented
away, known as quotient inductive types (QITs). In this sense these types
are not very ‘high’. Many meaningful examples of such set-truncated types
also allow the use of induction-induction (e.g. Cauchy reals, surreal numbers,
syntax of type theory in type theory). Therefore we are more generally in-
terested in investigating QITs with the added power of induction-induction,
called quotient inductive-inductive types (QIITs).

In order to provide a general semantics and theoretical foundation for QITs
and QIITs, I plan on working on the following subprojects.

1. Construct a container model of type theory

2. Refine an existing initial algebra semantics for QIITs by ‘containerifi-
cation’, so that it only permits strictly positive QIITs

3. Specify a syntax for QIITs arising from the above semantics

5.1 Container Model of Type Theory

For (1), I plan on formalising a container model of type theory using cate-
gories with families (CwFs). Some details and an incomplete Agda formal-
istion have already been set out in an abstract by Altenkirch and Kaposi

47

Chapter 5 5.1. Container Model of Type Theory

(2021), however there are still a number of issues that need to be resolved.
One issue is that their construction does not yet take into account h-levels,
and does not view contexts and types as h-sets, which would be required
for this model. Doing this requires a generalisation of CwFs which they call
coherent CwFs, where types are allowed to be groupoids (as opposed to just
sets), but this notion has also not been fully formalised. Our first objective
is therefore to work out the full details required for a complete formalisation
of the container model. As a starting point towards our CwF, we give some
of the most important definitions involved based on the above mentioned
abstract.

• We set the base category Con with objects being contexts and mor-
phisms being substitutions to the category of containers Cont. So
contexts are interpreted as containers S◁P for S : Set and P : S → Set,
and substitutions are interpreted as container morphisms u◁ f as pre-
sented in section 4.1.

• To interpret types in a given context, we provide the functor

Ty : Con → Set1
TyΓ := ∫JΓK → Set

of dependent containers. Given a context Γ, a type A is interpreted
as a generalised container whose container functor is of type

∫JΓ.S ◁ Γ.P K → Set.

If we recall the type of objects of the category of elements (see sec-
tion 2.4.2), we know that

| ∫JΓ.S ◁ Γ.P K| = (X : Set)× ((s : Γ.S)× (Γ.P s→ X)).

So a type A in context Γ interpreted as the container Γ.S ◁ Γ.P , will
consist of components A.S : Set and A.P : A.S → | ∫JΓ.S◁Γ.P K|, which
is in turn made up of three components, each one a mapping from
A.S to a corresponding entry in the product type. (Note that a type
therefore depends on both the shapes (Γ.S) and the positions (Γ.P)

of its context Γ, which is a different approach to existing container

48

Chapter 5 5.2. Containerification of Semantics for (Q)IITs

models of type theory in the literature.)

• To interpret terms of a given type in a given context, we provide the
functor

Tm : ∫ Ty → Set
Tm (Γ : Con)(A : TyΓ) := (X : Set)(x : JΓKX) → A(X,x)

=

∫
X:Set

(x : JΓKX) → A(X,x)

of dependent container morphisms i.e. dependent natural transforma-
tions.

More definitions are required to specify a CwF, but we will stop here for the
scope of this report.

5.2 Containerification of Semantics for (Q)IITs

For (2), I will improve on existing work by Altenkirch et al. (2018) to provide
an initial algebra semantics for QIITs. Initial algebra semantics for inductive
types and inductive families is already well established. This is partially
due to the fact that it is relatively straightforward to specify these types via
endofunctors (see FN, FList, and FVec in section 4.1.5). The same cannot be
said for IITs. Consider the IIT of contexts and types within that context,
as defined in section 2.3. The type Con and the type family Ty are defined
simultaneously and depend on each other mutually. Due to this high degree
of dependency in IITs, we cannot specify such a type via an endofunctor
and obtain initial algebra semantics that way. However, we still know what
an algebra of this type would look like, namely a record type with entries
for the sorts and constructors.

record ConTyAlg : Type1 where
field

-- sorts
C : Type -- Con
T : C → Type -- Ty
-- constructors
emp-con : C -- �

49

Chapter 5 5.2. Containerification of Semantics for (Q)IITs

ext-con : (Γ : C) → T Γ → C -- _,_
emp-ty : (Γ : C) → T Γ -- ι

sig-ty : (Γ : C) (A : T Γ) (B : T (ext-con Γ A)) → T Γ -- σ

So one possibility of still retrieving the IIT as an initial algebra of this form is
to devise a general scheme to construct suitable categories of such algebras,
by starting out with the sorts and incrementally adding the constructors,
until all the constructors have been added, and the IIT can be retrieved as
the carrier set of the initial object of the final category of algebras.

This is precisely the process formalised in Altenkirch et al. (2018), only they
consider the more general case of allowing set-truncated equalities, i.e. they
consider QIITs. This means that their work also describes cases where we
add the path constructor sig-eq : (Γ : Con) → (A : Ty Γ) → (B :
Ty (Γ , A)) → ((Γ , A) , B) ≡ (Γ , σ Γ A B) to Con.

Roughly speaking, the authors first desribe how to specify the sorts of a QIIT
via a category, then they describe how to specify each constructor via pairs
of presheaves L and R, where L specifies the arguments of a constructor and
R specifies the target, and then they show that incrementally adding each
constructor to the initial category of sorts gives rise to a category of algebras,
whose initial algebra corresponds to the QIIT. The limitation of this work
is that there is no guarantee that this initial algebra does in fact exist. In
other words, this work guarantees that if the initial algebra exists, then it
corresponds to the QIIT, but the construction described might also allow the
specification of categories of algebras which do not have an initial algebra,
i.e. it allows the specification of non-strictly positive inductive types. To
solve this problem, we will introduce several restrictions to the presheaves L
and R to make sure we do not allow such types to be defined, via a process
of ‘containerification’ of the presheaves. This will ensure that only strictly
positive types can be defined in our scheme.

Let us consider a subset of the IIT shown previously and give a brief idea of
how we would go about constructing the categories of algebras for this IIT.

data Con’ : Type
data Ty’ : Con’ → Type

data Con’ where

50

Chapter 5 5.2. Containerification of Semantics for (Q)IITs

, : (Γ : Con’) → Ty’ Γ → Con’

data Ty’ where
σ : (Γ : Con’) (A : Ty’ Γ) (B : Ty’ (Γ , A)) → Ty’ Γ

Our first category of algebras A0 will represent the sorts Con' and Ty'. We
can easily model these sorts using the category of families on sets Fam (see
section 2.4.1), whose objects are pairs (C, T) where C : Set and T : S → Set,
and whose morphisms (C, T) → (C ′, T ′) are pairs of functions (f, g) with
f : C → C ′ and g : (c : C) → T c→ T ′ (f c).

The next category of algebras A1 will represent the sorts with the construc-
tor _,_. We specify this constructor using two presheaves Lext and Rext,
with the first specifying the left hand side (Γ : Con') → Ty'Γ (or the list
of arguments), and the second specifying the right hand side Con' (or the
target).

Lext : A0 → Set
Rext : ∫ Lext → Set

= (a0 : A0)× (Lext a0) → Set

Lext(C, T) :=
∑

(Γ : C)(T Γ)

Rext((C, T), l : Lext(C, T)) := C

Now given An,An+1 can roughly be constructed as

An+1 :=
∑

(an : An)((l : Ln+1 an) → Rn+1 an l),

so A1 has objects of type
∑

(a0 : A0)(e : (l : Lext a0) → Rext a0 l)).

Similarly, we construct the next category of algebras A2 by first specifying

51

Chapter 5 5.3. Syntax for (Q)IITs

the next constructor σ via presheaves:

Lσ : A1 → Set
Rσ : ∫ Lσ → Set

= (a1 : A1)(Lσ a1) → Set

Lσ(C, T, e) :=
∑

(Γ : C)
∑

(A : T Γ)(T (eΓA))

Rσ((C, T, e) ((Γ, A, tΓ,A) : Lσ (C, T, e))) := T Γ

and then constructing A2 that has objects
∑

(a1 : A1)(e : (l : Lσ a1) →
Rσ a1 l). Since we have added all the constructors, A2 is the final category
of algebras, whose initial algebra would correpond to the Con' Ty' type.

The two important points to note about the representable functors L and
R are:

• We will want to restrict L and R to be container functors as this will
only allow the definition of strictly positive inductive types. Specifi-
cally, since the domains of these functors are categories of algebras,
we will need to use generalised containers.

• L and R interpret expressions in type theory (left and right hand
sides of a constructor) as containers, hence in general we want to be
able to interpret any type theoretic expression as a container. This
is one motivation for our container model of type theory, detailed in
section 5.1.

5.3 Syntax for (Q)IITs

For (3), I will specify a general syntax for IITs and QIITs given rise to
by the semantics discussed in section 5.2. Such a syntax is desirable as it
encapsulates precisely what it means to be an IIT or a QIIT, and allows us
to then prove theorems about these classes of types.

One such theorem is that IITs can be reduced to inductive families, i.e.
any IIT can be rewritten as an inductive family, making IITs and inductive
families equally as expressive. This theorem is part of the so called ‘folklore’
of type theory, as it is believed to be true but there is no proof of it in full

52

Chapter 5 5.3. Syntax for (Q)IITs

generality. von Raumer (2020) provides a starting point for this reduction,
but does not succeed in completing it. The syntax for IITs used in this
reduction attempt is the one presented by Kaposi et al. (2019) for QIITs,
excluding the parts about quotienting. We conjecture that the reason the
reduction from IITs to inductive families could not be completed is due
to this syntax, and that if instead we use the syntax resulting from our
‘containerified’ semantics, we will get unstuck. While Kaposi et al. (2019)
treat adding arguments to a constructor and adding a constructor to an
algebra in the same way (using context extension), our syntax will treat
them differently. We hope that this will allow us to complete the reduction
from IITs to inductive families.

53

Appendix

Cubical Agda Code

-- Definition of category with homsets which are h-sets
record Category {m n : Level} : Type (ℓ-suc (ℓ-max m n)) where

field
-- Structure
Obj : Type m
Hom : Obj → Obj → Type n
◦ : {A B C : Obj} → Hom B C → Hom A B → Hom A C
id : {A : Obj} → Hom A A
-- Properties
assoc : {A B C D : Obj} (h : Hom C D) (g : Hom B C) (f : Hom A B) →

(h ◦ g) ◦ f ≡ h ◦ (g ◦ f)
id-rneutr : {A B : Obj} (f : Hom A B) → f ◦ id ≡ f
id-lneutr : {A B : Obj} (f : Hom A B) → id ◦ f ≡ f
homs-are-sets : (A B : Obj) → isSet (Hom A B)

open Category

-- CONTAINERS IN 1 PARAMETER

record Container : Type1 where
constructor _◁_&_&_
field

S : Type
P : S → Type
isSetS : isSet S
isSetP : ∀ {s : S} → isSet (P s)

54

Appendix

open Container

-- Category Cont with objects Container

record _⇒_ (C1 C2 : Container) : Type where
constructor _◁_
field

u : S C1 → S C2

f : (s : S C1) → P C2 (u s) → P C1 s

open _⇒_

◦c : {C1 C2 C3 : Container} → C2 ⇒ C3 → C1 ⇒ C2 → C1 ⇒ C3

◦c (v ◁ g) (u ◁ f) = (λ a → v (u a)) ◁ λ a ga → f a (g (u a) ga)

id-◦c : {C : Container} → C ⇒ C
id-◦c = (λ s → s) ◁ λ _ p → p

assoc-c : {C1 C2 C3 C4 : Container} (h : C3 ⇒ C4) (g : C2 ⇒ C3) (f : C1 ⇒ C2) →
h ◦c (g ◦c f) ≡ (h ◦c g) ◦c f

assoc-c (w ◁ h) (v ◁ g) (u ◁ f) = refl

isSet⇒ : (C1 C2 : Container) → isSet (C1 ⇒ C2)
u (isSet⇒ (A ◁ B & set-A & set-B) (C ◁ D & set-C & set-D) m n p q i j) a =

set-C (u m a) (u n a) (λ k → u (p k) a) (λ k → u (q k) a) i j
f (isSet⇒ (A ◁ B & set-A & set-B) (C ◁ D & set-C & set-D) m n p q i j) a =

isSet→SquareP
{A = λ i j → D (set-C (u m a) (u n a) (λ k → u (p k) a) (λ k → u (q k) a) i j) → B a}
(λ i j → isSetΠ λ _ → set-B)
(λ k → f (p k) a)
(λ k → f (q k) a)
(λ _ → f m a)
(λ _ → f n a)
i j

Cont : Category {ℓ-suc ℓ-zero} {ℓ-zero}
Cont = record

{ Obj = Container
; Hom = _⇒_

55

Appendix

; _◦_ = _◦c_
; id = id-◦c
; assoc = assoc-c
; id-rneutr = λ m → refl
; id-lneutr = λ m → refl
; homs-are-sets = isSet⇒
}

-- Category of endofunctors on Set

record Functor {m m’ n n’} (C : Category {m} {m’}) (D : Category {n} {n’}) : Type
(ℓ-max m (ℓ-max m’ (ℓ-max n n’))) where

field
-- Structure
func-obj : Obj C → Obj D
func-mor : {A B : Obj C} → (Hom C) A B → (Hom D) (func-obj A) (func-obj B)
-- Properties
func-id : {A : Obj C} → func-mor (id C {A}) ≡ (id D {func-obj A})
func-comp : {U V W : Obj C} (g : (Hom C) V W) (f : (Hom C) U V) →

func-mor ((_◦_) C g f) ≡ (_◦_) D (func-mor g) (func-mor f)

open Functor

record NaturalTransformation {n n’} {C D : Category {n} {n’}} (F G : Functor C D) : Type
(ℓ-max n n’) where

constructor _,nat:_
field

mors : (A : Obj C) → (Hom D) (func-obj F A) (func-obj G A)
nat : (X Y : Obj C) (f : (Hom C) X Y) →

(_◦_ D) (func-mor G f) (mors X) ≡ (_◦_ D) (mors Y) (func-mor F f)

open NaturalTransformation

record h-set : Type1 where
field

set : Type
is-set : isSet set

open h-set

56

Appendix

isSet→ : (X Y : h-set) → isSet (set X → set Y)
isSet→ X Y = isSetΠ λ x → is-set Y

• : ∀ {a b c} {A : Type a} {B : Type b} {C : Type c} → (B → C) → (A → B) → (A → C)
f • g = λ x → f (g x)

SetC : Category {ℓ-suc ℓ-zero} {ℓ-zero}
SetC = record

{ Obj = h-set
; Hom = λ A B → set A → set B
; _◦_ = _•_ -- λ f g a → f (g a)
; id = λ a → a
; assoc = λ _ _ _ → refl
; id-rneutr = λ _ → refl
; id-lneutr = λ _ → refl
; homs-are-sets = isSet→
}

◦-f : {F G H : Functor SetC SetC} → NaturalTransformation G H → NaturalTransformation F G →
NaturalTransformation F H

mors (◦-f {F} {G} {H} (β-m ,nat: β-n) (α-m ,nat: α-n)) = (λ A fa → β-m A (α-m A fa))
nat (◦-f {F} {G} {H} (β-m ,nat: β-n) (α-m ,nat: α-n)) = λ X Y f →

(λ i fx → β-n X Y f i (α-m X fx)) • (λ i fx → β-m Y (α-n X Y f i fx))

id-mor-f : {F : Functor SetC SetC} → NaturalTransformation F F
id-mor-f = (λ A FA → FA) ,nat: λ _ _ f → refl

assoc-f : {F G H I : Functor SetC SetC} (γ : NaturalTransformation H I)
(β : NaturalTransformation G H) (α : NaturalTransformation F G) →
(◦-f {F} {G} {I} (◦-f {G} {H} {I} γ β) α) ≡ (◦-f {F} {H} {I} γ (◦-f {F} {G} {H} β α))

assoc-f {F} {G} {H} {I} (γ-m ,nat: γ-n) (β-m ,nat: β-n) (α-m ,nat: α-n) =
cong2 _,nat:_ refl (isProp→PathP (λ i → isPropΠ3
λ X Y f → isSet→ (func-obj F X) (func-obj I Y) _ _) _ _)

id-rneutr-f : {F G : Functor SetC SetC} (α : NaturalTransformation F G) →
◦-f {F} {F} {G} α (id-mor-f {F}) ≡ α

id-rneutr-f {F} {G} α =
cong2 _,nat:_ refl (isProp→PathP (λ i → isPropΠ3

57

Appendix

λ X Y f → isSet→ (func-obj F X) (func-obj G Y) _ _) _ _)

id-lneutr-f : {F G : Functor SetC SetC} (f : NaturalTransformation F G) →
◦-f {F} {G} {G} (id-mor-f {G}) f ≡ f

id-lneutr-f {F} {G} α =
cong2 _,nat:_ refl (isProp→PathP (λ i → isPropΠ3
λ X Y f → isSet→ (func-obj F X) (func-obj G Y) _ _) _ _)

isSetNatTrans : (F G : Functor SetC SetC) → isSet (NaturalTransformation F G)
mors (isSetNatTrans F G α β p q i j) X s =

is-set (func-obj G X) (mors α X s) (mors β X s) (λ k → mors (p k) X s) (λ k → mors (q k) X s) i j
nat (isSetNatTrans F G α β p q i j) X Y xy k fx = cube i j k

where
cube : Cube (λ j k → nat (p j) X Y xy k fx) (λ j k → nat (q j) X Y xy k fx)

(λ i k → nat α X Y xy k fx) (λ i k → nat β X Y xy k fx)
(λ i j → func-mor G xy (mors (isSetNatTrans F G α β p q i j) X fx))
(λ i j → is-set (func-obj G Y) (mors α Y (func-mor F xy fx))

(mors β Y (func-mor F xy fx))
(λ k → mors (p k) Y (func-mor F xy fx))
(λ k → mors (q k) Y (func-mor F xy fx)) i j)

cube = isSet→SquareP (λ i j → isOfHLevelPath 2 (is-set (func-obj G Y)) _ _) _ _ _ _

Func : Category {ℓ-suc ℓ-zero} {ℓ-suc ℓ-zero}
Func = record

{ Obj = Functor SetC SetC
; Hom = λ F G → NaturalTransformation F G
; _◦_ = λ {F} {G} {H} gh fg → ◦-f {F} {G} {H} gh fg
; id = λ {F} → id-mor-f {F}
; assoc = λ {F} {G} {H} {I} → assoc-f {F} {G} {H} {I}
; id-rneutr = λ {F} {G} → id-rneutr-f {F} {G}
; id-lneutr = λ {F} {G} → id-lneutr-f {F} {G}
; homs-are-sets = isSetNatTrans
}

-- Functor J_K : Cont → Func

record cont-func (A : Type) (B : A → Type) (X : h-set) : Type where
constructor _<_

58

Appendix

field
shape : A
pos : B shape → set X

open cont-func

isSetContFunc : (A : Type) (B : A → Type) (X : h-set) (isSetA : isSet A)
(isSetB : ∀ {a : A} → isSet (B a)) → isSet (cont-func A B X)

shape (isSetContFunc A B X setA setB s1 s2 p q i j) =
setA (shape s1) (shape s2) (λ k → shape (p k)) (λ k → shape (q k)) i j

pos (isSetContFunc A B X setA setB s1 s2 p q i j) =
isSet→SquareP

{A = λ i j → B (setA (shape s1) (shape s2) (λ k → shape (p k)) (λ k → shape (q k)) i j) → set X}
(λ _ _ → isSetΠ (λ _ → is-set X))
(λ k → pos (p k))
(λ k → pos (q k))
(λ _ → pos s1)
(λ _ → pos s2)
i j

cont-mor : {A : Type} {B : A → Type} {X Y : h-set} (f : set X → set Y) →
cont-func A B X → cont-func A B Y

cont-mor f (s < g) = s < λ b → f (g b)

J_K-obj : Container → Functor SetC SetCJ (A ◁ B & set-A & set-B) K-obj = record
{ func-obj = λ X →

record { set = cont-func A B X ;
is-set = isSetContFunc A B X set-A set-B
} ;

func-mor = λ {X} {Y} f → cont-mor {A} {B} {X} {Y} f;
func-id = refl ;
func-comp = λ _ _ → refl

}J_K-mor : {C D : Container} → C ⇒ D → NaturalTransformation J C K-obj J D K-obj
mors (J_K-mor (u ◁ f)) X (s < p) = u s < λ q → p (f s q)
nat (J_K-mor (u ◁ f)) X Y xy i (s < p) = u s < λ q → xy (p (f s q))

59

Appendix

J_K-comp : {U V W : Container} (g : V ⇒ W) (f : U ⇒ V) → J g ◦c f K-mor ≡ ◦-f J g K-mor J f K-morJ_K-comp {S ◁ P & set-S & set-P} {T ◁ Q & set-T & set-Q} {U ◁ R & set-U & set-R} g f =
cong2 _,nat:_ refl

(funExt λ X → funExt (λ Y → funExt (λ xy →
isProp→PathP

(λ _ → λ p q i j sp →
isSetContFunc U R Y set-U set-R

((cont-mor xy • mors J g ◦c f K-mor X) sp)
((mors J g ◦c f K-mor Y • cont-mor xy) sp)
(funExt− p sp)
(funExt− q sp)
i j)

_ _)))

J_K : Functor Cont FuncJ_K = record
{ func-obj = J_K-obj ;

func-mor = J_K-mor ;
func-id = refl ;
func-comp = J_K-comp

}

-- Example

ListC : Container
ListC = N ◁ Fin & isSetN & isSetFin

ListF : Functor SetC SetC
ListF = J ListC K-obj

-- Proof 1 that the functor J_K is full and faithful
-- Adapted from 'Containers: Constructing strictly positive types'

_-fully-faithful : {m m’ n n’ : Level} {C : Category {m} {n}} {D : Category {m’} {n’}} →
Functor C D → Type (ℓ-max (ℓ-max m n) n’)

_-fully-faithful {C = C} {D = D} F = (X Y : Obj C) → Iso ((Hom C) X Y) ((Hom D)

60

Appendix

((func-obj F) X) ((func-obj F) Y))

fun : (X Y : Container) → X ⇒ Y → NaturalTransformation J X K-obj J Y K-obj
fun X Y = J_K-mor {X} {Y}

inv : (X Y : Container) → NaturalTransformation J X K-obj J Y K-obj → X ⇒ Y
inv (A ◁ B & _ & set-B) (C ◁ D & _ & _) (mors ,nat: nat) =

(λ a → shape (cd a)) ◁ (λ a d → pos (cd a) d)
where

Ba : A → h-set
Ba a = record { set = B a ; is-set = set-B }
cd : (a : A) → cont-func C D (Ba a)
cd a = mors (Ba a) (a < λ ba → ba)

sec : (X Y : Container) → ∀ nat-trans → (fun X Y) ((inv X Y) nat-trans) ≡ nat-trans
sec (A ◁ B & set-A & set-B) (C ◁ D & set-C & set-D) (mors ,nat: nat) =

cong2
,nat:
(funExt

{f = NaturalTransformation.mors
(fun (A ◁ B & set-A & set-B) (C ◁ D & set-C & set-D)
(inv (A ◁ B & set-A & set-B) (C ◁ D & set-C & set-D) (mors ,nat: nat)))}

{g = mors}
λ X → funExt

{f = NaturalTransformation.mors
(fun (A ◁ B & set-A & set-B) (C ◁ D & set-C & set-D)
(inv (A ◁ B & set-A & set-B) (C ◁ D & set-C & set-D) (mors ,nat: nat))) X}

{g = mors X}
λ {(s’ < h’) → funExt− (nat (record { set = B s’ ; is-set = set-B }) X h’) (s’ < λ x → x)})

(isProp→PathP (λ i → isPropΠ3
(λ X Y f → isSetΠ (λ _ → isSetContFunc C D Y set-C set-D) _ _)) _ _)

ret : (X Y : Container) → ∀ mor → (inv X Y) ((fun X Y) mor) ≡ mor
ret C1 C2 (u ◁ f) = refl

J_K-fully-faithful : J_K -fully-faithfulJ_K-fully-faithful X Y = iso (fun X Y) (inv X Y) (sec X Y) (ret X Y)

61

Appendix

-- Proof 2 that the functor J_K is full and faithful

record ProFunctor {m m’} (C : Category {m} {m’}) : Type (ℓ-suc (ℓ-max m m’)) where
field

-- Structure
profunc-obj : Obj C → Obj C → Obj SetC
profunc-mor : {P P’ Q Q’ : Obj C} → (Hom C) P P’ → (Hom C) Q Q’ →

(Hom SetC) (profunc-obj P’ Q) (profunc-obj P Q’)
-- Properties
profunc-id : {P Q : Obj C} → profunc-mor (id C {P}) (id C {Q}) ≡ (id SetC {profunc-obj P Q})
profunc-comp : {P Q R S T U : Obj C} (g : (Hom C) Q R) (g’ : (Hom C) P Q)

(f : (Hom C) T U) (f’ : (Hom C) S T) →
profunc-mor ((_◦_ C) g g’) ((_◦_ C) f f’) ≡
(_◦_ SetC) {profunc-obj R S} {profunc-obj Q T} {profunc-obj P U}
(profunc-mor g’ f) (profunc-mor g f’)

open ProFunctor

-- Hom-functor in general

hom-functor : ∀ {m} → (C : Category {m} {ℓ-zero}) → ProFunctor {m} {ℓ-zero} C
hom-functor C = record

{ profunc-obj = λ X Y →
record { set = (Hom C) X Y ; is-set = (homs-are-sets C) X Y }

; profunc-mor = λ aa’ bb’ a’b → (_◦_ C) ((_◦_ C) bb’ a’b) aa’
; profunc-id = funExt λ f → (id-rneutr C ((C ◦ id C) f)) • id-lneutr C f
; profunc-comp = λ {P} {Q} {R} {S} {T} {U} qr pq tu st →

funExt λ rs →
cong (λ X → (C ◦ X) ((C ◦ qr) pq)) (assoc C tu st rs) •

assoc C tu ((C ◦ st) rs) ((C ◦ qr) pq) •

cong (λ X → (C ◦ tu) X) (sym (assoc C ((C ◦ st) rs) qr pq)) •

sym (assoc C tu ((C ◦ ((C ◦ st) rs)) qr) pq)
}

nats : (F G : Functor SetC SetC) → ProFunctor SetC
nats F G = record

{ profunc-obj = λ c c’ →
record { set = (Hom SetC) (func-obj F c) (func-obj G c’) ;

62

Chapter 5

is-set = isSetΠ (λ _ → is-set (func-obj G c’)) }
; profunc-mor = λ f g h x → func-mor G g (h (func-mor F f x))
; profunc-id =

funExt λ f → funExt λ fx →
cong (λ X → func-mor G (λ a → a) (f X)) (funExt− (func-id F) fx) •

funExt− (func-id G) (f fx)
; profunc-comp = λ {P} {Q} {R} {S} {T} {U} qr pq tu st →

funExt λ rs → funExt λ Fp →
cong (λ X → func-mor G (tu • st) (rs X)) (funExt− (func-comp F qr pq) Fp) •

funExt− (func-comp G tu st) (rs (func-mor F qr (func-mor F pq Fp)))
}

record ∫ {m m’} {C : Category {m} {m’}} (F : ProFunctor C) : Type (ℓ-suc (ℓ-max m m’)) where
field

funcs : (c : Obj C) → set (profunc-obj F c c)
nat : (c d : Obj C) (f : (Hom C) c d) →

profunc-mor F ((id C) {c}) f (funcs c) ≡ profunc-mor F f ((id C) {d}) (funcs d)

open ∫

H^ : (A : Obj SetC) → Functor SetC SetC
H^ A = record

{ func-obj = λ B → record { set = (Hom SetC) A B ; is-set = isSetΠ (λ _ → is-set B) } ;
func-mor = λ g p a → g (p a);
func-id = refl ;
func-comp = λ _ _ → refl }

yoneda-lemma : (F : Functor SetC SetC) (A : Obj SetC) → Iso (∫ (nats (H^ A) F)) (set (func-obj F A))
yoneda-lemma = {!!}

J_K-fully-faithful’ : (C1 C2 : Container) → Iso (∫ (nats J C1 K-obj J C2 K-obj)) (C1 ⇒ C2)J_K-fully-faithful’ = {!!}

63

Bibliography

Abbott, M., Altenkirch, T., and Ghani, N. (2005). Containers: Construct-
ing strictly positive types. Theoretical Computer Science, 342(1):3–27.
Applied Semantics: Selected Topics.

Abel, A. and Altenkirch, T. (2000). A predicative strong normalisation
proof for a λ-calculus with interleaving inductive types. volume 1956,
pages 227–243.

Altenkirch, T. (2019). Categories for the lazy functional programmer. http:
//www.cs.nott.ac.uk/~psztxa/mgs.2019/ [Accessed: July 2022].

Altenkirch, T., Capriotti, P., Dijkstra, G., Kraus, N., and Nordvall Forsberg,
F. (2018). Quotient inductive-inductive types. In Baier, C. and Dal Lago,
U., editors, Foundations of Software Science and Computation Structures,
pages 293–310, Cham. Springer International Publishing.

Altenkirch, T., Ghani, N., Hancock, P., Mcbride, C., and Morris, P. (2015).
Indexed containers. Journal of Functional Programming, 25.

Altenkirch, T. and Kaposi, A. (2021). A container model of type theory. In
TYPES 2021.

Altenkirch, T., Levy, P., and Staton, S. (2010). Higher-order containers. In
Ferreira, F., Löwe, B., Mayordomo, E., and Mendes Gomes, L., editors,
Programs, Proofs, Processes, pages 11–20, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Altenkirch, T. and Morris, P. (2009). Indexed containers. In 2009 24th
Annual IEEE Symposium on Logic In Computer Science, pages 277–285.

Atkey, R. (2020). Interpreting dependent types with containers. Talk at the
MSP101 seminar, University of Strathclyde.

Brunerie, G. (2016). On the homotopy groups of spheres in homotopy type
theory. PhD thesis.

64

http://www.cs.nott.ac.uk/~psztxa/mgs.2019/
http://www.cs.nott.ac.uk/~psztxa/mgs.2019/

Cartmell, J. (1986). Generalised algebraic theories and contextual cate-
gories. Annals of Pure and Applied Logic, 32:209–243.

Dybjer, P. (1996). Representing inductively defined sets by wellorderings in
Martin-Löf’s type theory.

Dybjer, P. (2003). Internal type theory.

Gambino, N. and Hyland, M. (2004). Wellfounded trees and dependent
polynomial functors. In Berardi, S., Coppo, M., and Damiani, F., edi-
tors, Types for Proofs and Programs, pages 210–225, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Hofmann, M. (1997). Syntax and semantics of dependent types, pages 13–54.
Springer London, London.

Jacobs, B. (1993). Comprehension categories and the semantics of type
dependency. Theoretical Computer Science, 107(2):169–207.

Kaposi, A. (2013). First year report. An introduction to type theory with
a notation using De Bruijn indices and explicit substitutions.

Kaposi, A., Kovács, A., and Altenkirch, T. (2019). Constructing quotient
inductive-inductive types. Proc. ACM Program. Lang., 3(POPL).

Kovács, A. (2020). The container model of type theory. Talk at the type
theory seminar, Eötvös Loránd University.

Leinster, T. (2016). Basic category theory.

Licata, D. R. and Shulman, M. (2013). Calculating the fundamental group
of the circle in homotopy type theory.

Lumsdaine, P. L. and Shulman, M. (2019). Semantics of higher inductive
types. Mathematical Proceedings of the Cambridge Philosophical Society,
169(1):159–208.

Martin-Löf, P. (1971). Hauptsatz for the intuitionistic theory of iterated
inductive definitions. In Studies in Logic and the Foundations of Mathe-
matics, volume 63, pages 179–216. Elsevier.

Martin-Löf, P. (1972). An intuitionistic theory of types. Twenty-Five Years
of Constructive Type Theory.

Martin-Löf, P. (1982). Constructive mathematics and computer program-
ming. In Studies in Logic and the Foundations of Mathematics, volume
104, pages 153–175. Elsevier.

Martin-Löf, P. and Sambin, G. (1984). Intuitionistic type theory, volume 9.
Bibliopolis Naples.

Milewski, B. (2018). Category Theory for Programmers. Blurb, Incorpo-
rated.

The Univalent Foundations Program (2013). Homotopy Type Theory: Uni-
valent Foundations of Mathematics. https://homotopytypetheory.org/
book, Institute for Advanced Study.

von Glehn, T. (2015). Polynomials and models of type theory. PhD thesis,
University of Cambridge.

von Raumer, J. (2020). Higher inductive types, inductive families, and
inductive-inductive types. PhD thesis, University of Nottingham, UK.

https://homotopytypetheory.org/book
https://homotopytypetheory.org/book

Index

category of elements, 10
category of families, 10
category with families, 44
container

n-ary container, 36
n-ary container extension

functor, 36
indexed container, 42
category of n-ary containers,

36
category of (unary)

containers, 24
constant container, 32
container extension functor,

25
container functor, 22
generalised container, 42

unary container, 22

definitional equality, 5

end, 11

hom functor, 13

inductive type, 5

profunctor, 10
propositional equality, 5

representable functor, 14

type
inductive type, 20
strictly positive type, 21

wedge, 11

67

	Introduction
	Research Topic
	Progress to Date
	Overview of the Report

	Prerequisites
	Martin-Löf Type Theory
	Equality and HoTT
	Overview of Inductive Types
	Category Theory
	Category of families
	Category of elements
	Ends
	The Yoneda Lemma
	Initial Algebra Semantics of Inductive Types

	Literature Review
	Topics Studied
	Containers
	Inductive Types
	Defining Containers
	Categories of Containers
	Initial Algebras and Terminal Coalgebras
	Generalisations

	Models of type theory

	Future Work Plan
	Container Model of Type Theory
	Containerification of Semantics for (Q)IITs
	Syntax for (Q)IITs

	Appendix Cubical Agda Code

