
Constructing Simple and Mutual
Inductive Types

Stefania Damato

School of Computer Science

University of Nottingham

September 2020

Submitted in partial fulfillment of the conditions for the
award of the degree MSc Computer Science.

I hereby declare that this dissertation is all my own work,
except as indicated in the text.

Date : 10/09/2020

Signature:

Abstract

Martin-Löf’s dependent type theory is a formal language developed on the
principles of constructive mathematics. It acts as the basis for modern proof
assistants like Agda, which are tools for doing computer-assisted mathemat-
ics. This dissertation investigates the central notion of an inductive type
within Martin-Löf type theory. We construct a small theory of signatures as
a framework in which we can express simple or mutual inductive types. For
a given signature, we then construct algebras, algebra morphisms, the initial
algebra, and a unique morphism from the initial algebra to any other alge-
bra. We thus obtain a complete specification of simple and mutual inductive
types. Next, we focus on the W-type, an inductive type which encapsulates
the recursive aspect of any inductive type. For a given signature, we con-
struct an algebra for the indexed W-type’s representation of the signature.
We then present our attempt at constructing the iterator for this algebra.
This provides a starting point for completing a reduction from simple and
mutual inductive types to W-types, in order to show that a type theory sup-
porting W-types can support all simple and mutual inductive types.

Keywords: Martin-Löf type theory; Agda; theory of signatures; inductive
types; W-types; indexed W-types.

The research work disclosed in this publication is funded by the ENDEAVOUR Scholar-

ships Scheme (Malta). The scholarship is part-financed by the European Union – Euro-

pean Social Fund (ESF) under Operational Programme II – Cohesion Policy 2014-2020,

“Investing in human capital to create more opportunities and promote the well-being of

society”.

Acknowledgments

I would like to thank Malta’s ENDEAVOUR scholarships scheme for allowing
me to pursue this Master’s degree. I am fortunate and grateful to have had
Prof. Thorsten Altenkirch supervise this project. His guidance, support, and
sense of humour were a great help during this journey. Many thanks also go
to my parents for their backing, as well as friends who offered encouragement
and assistance, particularly Duncan, Luke and Dr Jean-Paul Ebejer.

Contents

1 Introduction 1
1.1 Aim and Motivation . 1
1.2 Overview of the Dissertation 2
1.3 Contributions . 2

2 Background 4
2.1 What is Type Theory? . 4
2.2 Type Theory vs. Set Theory 5
2.3 Propositions as Types . 6
2.4 Dependent Types . 8
2.5 Martin-Löf Type Theory Constructs 9
2.6 Inductive Types . 11

2.6.1 W-Types . 13
2.7 Agda . 14
2.8 Category Theory Background 16

3 Literature Review 21

4 The Theory of Signatures 25
4.1 Suite of Examples . 25
4.2 Signatures . 27
4.3 Example Signatures . 28

5 Constructions on Signatures 30
5.1 Algebras . 30
5.2 Morphisms . 34
5.3 The Initial Algebra . 38
5.4 The Iterator . 42
5.5 Uniqueness of the Iterator . 50

6 Constructing WI-types 53
6.1 WI-Types Introduction and Examples 53
6.2 The Carriers . 57
6.3 The Constructors . 60
6.4 The Iterator . 64

7 Conclusion and Future Work 68

1
Introduction

Our project investigates inductive types within the context of Per Martin-
Löf’s Type theory. This chapter presents the main problem this project
seeks to address, the motivation for our study, an overview of the rest of the
dissertation, and the contributions of our work.

1.1 Aim and Motivation

The main aim of this project is to address a gap in the formalisation of
inductive types left incomplete by more general work—namely, a complete
specification of simple and mutual inductive types, and an attempt at show-
ing that W-types are enough to represent all simple and mutual inductive
types. We build a framework in which we can specify any simple or mu-
tual inductive type, and give a general construction for an inductive type in
this framework. We then specify indexed W-types and start to construct a
reduction from the previously defined inductive types to indexed W-types.

This project contributes towards the development of the metatheory of Martin-
Löf Type Theory, by investigating its notion of an inductive type and reduc-
ing all inductive types to a single type. Type theory is the basis for type
systems of programming languages and full-scale software verification. The
study of type theory allows us to give better behavioural guarantees for our
software, by making our requirements more explicit through the use of more
expressive types. The constructions involved in these software verification
systems can however become very large and complicated. Reducing this code
base to a small as possible trusted core has two main advantages, the first
being that we have to ‘trust’ as little code as possible that is responsible for
our verification, and the second that we can avoid bugs which can be taken
advantage of by malicious users. Moreover, Martin-Löf Type Theory was

1

Chapter 1 1.2. Overview of the Dissertation

also constructed as an alternative (constructive) foundation of mathematics
to set theory. The study of its metatheory is therefore essential if we are to
seriously regard Martin-Löf Type Theory as a fully-fledged foundation for
constructive mathematics.

1.2 Overview of the Dissertation

Chapter 2 gives an overview of the background material required for the rest
of this dissertation. It presents an introduction to type theory and contrasts
it with set theory, explains the propositions as types paradigm, and discusses
Martin-Löf Type Theory constructs and inductive types. It then gives a brief
introduction to Agda and why we use it in our project. The section ends
with some category theory background we use in Chapter 5.

Chapter 3 contains a review of the related literature, and further contextu-
alises and motivates our project.

In Chapter 4 we introduce our suite of examples and define a general frame-
work in which to express inductive types.

Chapter 5 details our constructions of algebras, morphisms, the initial alge-
bra, the iterator, and a proof of the latter’s uniqueness for a general inductive
type.

In Chapter 6 we cover our construction of the carriers and constructors
for WI-types. We also describe our attempt at constructing the WI-type
iterator, explain the challenges involved in its construction, and provide some
ideas for ways to solve these challenges.

Chapter 7 concludes the dissertation with a summary and critical evaluation
of our work, as well as future directions for the work.

1.3 Contributions

The main contributions of this dissertation are listed below.

• The construction of a small ‘theory of signatures’, a framework in which
we can express any simple or mutual inductive type as a signature
which holds all the necessary details about the type. This framework’s
syntax, described using an inductive type itself, was designed to be

2

Chapter 1 1.3. Contributions

extendable, and we aim to expand it in future work to accommodate
for more general types.

• A constructive derivation of the initial algebra of any given signature
from the above framework, thereby providing a complete specification
of simple and mutual inductive types, achieved by using induction on
the syntax of the theory of signatures. More specifically, for a given
signature S, we define the following.

i. Algebras for S, consisting of carriers and their constructors.

ii. Morphisms over algebras for S, which map the carriers of one
algebra to the carriers of the other, and consist of a proof that
these mappings are structure-preserving.

iii. The initial algebra for S.

iv. A morphism from the initial algebra for S to any other S-algebra,
called the iterator.

v. A proof that the iterator is unique, i.e. that any morphism from
the initial algebra for S to any other S-algebra is equivalent to the
iterator.

• The construction of the carriers and constructors for WI-types, re-
sulting in the WI-type algebra for a given signature S, as well as a
significant starting point for completing a reduction from W-types to
simple and mutual inductive types, in order to show that a type theory
supporting W-types can support all inductive types.

Our original objective was the complete reduction from simple and mu-
tual inductive types to WI-types. Due to time constraints and some
unforeseen challenges in our work, this target was not achieved, how-
ever the only missing elements are the completion of the iterator for
the WI-type algebra and a proof of its uniqueness, which we believe
should only be slightly more difficult than the one we completed for
the theory of signatures representation. This should therefore not take
too long, and we leave it for future work. All of the constructions men-
tioned here were formalised in Agda and type checked in Agda version
2.6.0.1. This code was submitted as supplementary material.

3

2
Background

This chapter introduces the reader to the general area in which this dis-
sertation sits, and presents the background material required to understand
the rest of the report. Most of this material is adapted from The Univa-
lent Foundations Program (2013), Prof. Thorsten Altenkirch’s notes on type
theory and category theory, and Bartosz Milewski’s ‘Category Theory for
Programmers’ (Milewski, 2018).

2.1 What is Type Theory?

A type theory or type system is a formal system in which every term is of
some definite type. It sets out rules about the introduction and computation
of types and their terms.

Type theories were originally motivated by questions related to the foun-
dations of mathematics. Bertrand Russell discovered that some formalisa-
tions of naïve set theory lead to a paradox when considering the set of all
sets that are not members of themselves. He tried to amend this with a
‘tentative’ theory of types (Russell, 1903). An early elegant formulation of
a type theory called the simply typed lambda calculus was developed by
Alonzo Church (Church, 1940). Later, William Alvin Howard wrote about
the Curry–Howard correspondence (Howard, 1980), that is the direct rela-
tion between simply-typed lambda calculus and natural deduction, introduc-
ing the idea of ‘propositions as types’. This was the starting point for Per
Martin-Löf’s Type Theory, which is the type theory we will be considering
in this dissertation, and which we refer to hereafter simply as Type Theory.

4

Chapter 2 2.2. Type Theory vs. Set Theory

2.2 Type Theory vs. Set Theory

Most mathematicians today accept and use set theory as the foundation
of mathematics. Martin-Löf developed Type Theory, among other things,
as a foundation for intuitionistic mathematics.1 It is therefore instructive
to explain the basic concepts of Type Theory in relation to how they are
treated in set theory.

Set theory organises mathematical objects into collections called sets, such
as the set of natural numbers N = {1, 2, 3, . . . }. All mathematical objects
can be represented as sets. For instance, the number 0 is simply a shorthand
representation for the empty set {}, 1 is the set containing 0 {{}}, 2 is the
set containing 0 and 1 {{}, {{}}}, and so on. All other mathematical objects
such as relations, functions, lines, curves, and algebraic structures, can be
defined in terms of sets.

Type Theory organises mathematical objects into types instead of sets, such
as the type N of the natural numbers. Types collect objects of the same
nature or structure together, and there are specific ways of forming new
types from existing ones. There are four basic judgements in Type Theory,
the first two of which are ‘A is a type’ and ‘A and B are equal types’.

The third basic judgement in Type Theory that expresses that ‘a mathe-
matical object (or term) a is of type A’ is written as a : A. For instance, to
express that 3 is of type N, we write 3 : N. We note that a : A differs from
a ∈ A in that the former is a judgment whereas the latter is a proposition
which can be true or false. We can think of a ∈ A as a relation about two
pre-existing objects a and A which may or may not hold, and a : A as an
atomic statement such that we cannot talk about a term a without speci-
fying its type. In Type Theory, we can only construct terms of a certain
pre-existing type, so that the type comes first and its terms come later.

The fourth basic judgement in Type Theory is the judgement a ≡A b for the
terms a, b : A, expressing that ‘a and b are definitionally equal’. Another form
of equality in Type Theory, which is a proposition instead of a judgement

1Intuitionism is a philosophy of mathematics introduced by L.E.J. Brouwer, which
states that a mathematical object exists only if it can be constructed. In particular, it
rejects the law of the excluded middle, which states that any proposition is either true or
false: for all propositions P , we have P ∨ ¬P .

5

Chapter 2 2.3. Propositions as Types

and is equivalent to the equality used in set theory, is propositional equality,
written a =A b. When defining a function f : N → N by f(x) = x + 5,
that f(2) and 7 are equal is definitional—it is simply a matter of expanding
out a definition. It would not make sense to reason about this equality as a
proposition. On the other hand, that x+ 5 is equal to 5 + x is a proposition
that can be proved, and is hence a propositional equality. This distinction
between equalities allows Type Theory to be agnostic about representations
or encodings of mathematical objects, unlike in set theory.

The last difference between the theories we will mention here is that contrary
to set theory, Type Theory is its own deductive system. Set theoretic founda-
tions consist of two levels: the deductive system of first-order logic, together
with the axioms of a particular theory, such as the Zermelo–Fraenkel axioms
with choice (ZFC). Therefore, the proofs exist within first-order logic, which
is a separate universe to that of the mathematical objects they talk about.
However, Type Theory encodes both proofs and mathematical objects in a
single language. Notions like negation, conjunction, and disjunction can be
encoded as types themselves within the Type Theory.

2.3 Propositions as Types

How do we encode concepts from predicate logic, such as negation and con-
junction, within Type Theory? In Type Theory, we do not think of truth,
but rather of evidence. Instead of saying that a proposition2 P holds or is
true, we say that we have evidence for P . We associate P to a type and then
construct an element of this type as a witness. Hence, the typing judgment
a : A can be read both as ‘a is an element (or term) of type A’, and as ‘a is
a witness (or proof) of the proposition A’.

This notion is known as the Curry–Howard correspondence or propositions–
as–types. The basic idea is that derivations in natural deduction, or proofs,
and terms in lambda calculus, or computations, are essentially equivalent.
Proofs correspond to programs, and what the proof is proving is the type of
the program. Hence types play the role of propositions, and terms of a type A
are proofs of the proposition A. We combine this with the Brouwer-Heyting-

2By proposition, we mean a statement that potentially has a proof. A theorem is then
a proposition that has been proven.

6

Chapter 2 2.3. Propositions as Types

Kolmogorov (BHK) interpretation of logical operators in intuitionistic logic.
This gives us that the meaning of a proposition A is a proof, or evidence, for
A, and this proof can be expressed in terms of proofs of the sub-parts of A,
if there are any (Troelstra, 1991). The way to provide evidence for a given
proposition is then shown below for types A and B and property P .

Logic Type Theory

A =⇒ B A→ B

A ∧B A×B
A ∨B A+B

A ⇐⇒ B (A→ B)× (B → A)

True 1
False 0
¬A A→ 0
∀x : A.P (x) Πx:AP (x)

∃x : A.P (x) Σx:AP (x)

Table 2.1: Logic connectives and their type theoretic equivalents.

The type theoretic connectives shown in Table 2.1 will be covered in more
detail in Section 2.5. Evidence for A ⇒ B is a function which transforms
evidence for A to evidence for B. To provide evidence for A∧B we provide
a pair, with the first element being evidence for A and the second element
being evidence for B. Evidence for A∨B consists of either evidence for A or
evidence for B, i.e. the sum, or disjoint union, of A and B. A ⇔ B follows
similarly to A ⇒ B but in both directions. True is represented by the type
with one element 1, and false is represented by the empty type 0. Evidence
for ¬A is a function which takes evidence for A and inhabits the empty type,
i.e. leads to a contradiction. For the translation of the quantifiers ∀ (for all)
and ∃ (exists), we require dependent types, which we will discuss in the next
section. To provide evidence for ∀x : A.P (x), we use the dependent function
type which assigns to any element x of A evidence for P (x). To provide
evidence for ∃x : A.P (x), we use the dependent pair type which specifies a
particular element x of A and provides evidence for P (x).

7

Chapter 2 2.4. Dependent Types

2.4 Dependent Types

To properly understand the type of the evidence necessary for the quan-
tifiers ∀ and ∃, we need to look into dependent types. Martin-Löf Type
Theory differs from other type theories which also follow the Curry-Howard
correspondence, by extending this correspondence to predicate logic using
dependent types.

Generally speaking, as the name suggests, a dependent type is a type depend-
ing on other types. The List data type is such a type, being parameterised
by the type A.

data List (A : Set) : Set where

[] : List A

:: : A → List A → List A

However, types like List, which depend on Set itself as opposed to a type
of type Set, are not usually called dependent types because they fall under
polymorphism, which is implemented in languages such as Haskell which do
not support general dependent types. A better example would be the Vec

data type, which is parameterised by the type A and indexed by N.

data Vec (A : Set) : N → Set where

[] : Vec A 0

:: : {n : N} → A → Vec A n → Vec A (suc n)

Vec A n is the type of vectors of length n having elements of type A. This type
shows the full power of dependent types, as the type Vec A n depends on the
value of one of its arguments, not just its type as we saw with List. We also
note that Vec A actually defines a collection of types, as it encapsulates the
the definitions of the types Vec A zero, Vec A (suc zero), Vec A (suc (suc

zero)), and so on, as opposed to a single type.

Dependent types allow us to express requirements for our code, which can
help us ensure that our code is correct. For instance, when appending two
vectors of length i and j, the resulting vector should have length i+ j. This
constraint can be expressed in the type of the append function for vectors.

++v : {A : Set}{i j : N} → Vec A i → Vec A j → Vec A (i + j)

[] ++v y = y

8

Chapter 2 2.5. Martin-Löf Type Theory Constructs

(x :: xs) ++v y = x :: (xs ++v y)

This type disallows certain mistakes, like setting [] ++v w to be [] for any
w of length j, because the empty list [] has length 0 but the compiler is
expecting a list of length 0 + j = j. Contrast this to the append function
for lists, where such a mistake would not be caught by the compiler because
the type is not as expressive.

++ : {A : Set} → List A → List A → List A

[] ++ y = y

(x :: xs) ++ y = x :: (xs ++ y)

2.5 Martin-Löf Type Theory Constructs

Now that we have motivated the use of dependent types, we detail the rela-
tion between simple and dependent types, and revisit Section 2.3 to see how
we can construct new types in Type Theory.

Universes

So far, we have been using the phrase ‘A is a type’, but have not been precise
about what this means. A universe U is a type whose elements are types.
Thus, for example, N is the type of natural numbers and its type is U . A
natural question arises: what is the type of U? To avoid Russell’s paradox,
we say that there is a hierarchy of universes such that U = U0 : U1 : U2 :
Every universe Ui is an element of type Ui+1, and Ui : Uj for every j > i.

Thus, what we mean by ‘A is a type’ is ‘A is an element of some universe
Ui’. We usually omit the subscript and unless stated otherwise, ‘A is a type’
will mean that ‘A is an element of U ’ with U = U0.

Function Types (→)

The function type is a basic type former for simple types. Given types
A and B, we can form the function type A → B which denotes the type
of functions whose domain is A and whose codomain is B. Functions are
constructed using λ-abstraction or pattern matching.

9

Chapter 2 2.5. Martin-Löf Type Theory Constructs

Product Types (×)

The product type is another basic type former for simple types. Given types
A and B, we can form the product type A × B. Elements of this type are
pairs (a, b) where a : A and b : B, in fact this type is comparable to the
Cartesian product of two sets in set theory.

Sum Types (+)

The sum type (or co-product type) is the last basic type former for simple
types. Given types A and B, we can form the sum type A + B. Elements
of this type are constructed either as inl(a) where a : A, or as inl(b) where
b : B. The sum type is related to the disjoint union of two sets in set theory,
although the sum type in Type Theory is agnostic to the representation of
the types, whereas the disjoint union in set theory is not.

Π-types

A generalisation of the function type is the dependent function type, or Π-
type, which is a basic type former for dependent types. Given a type A and
a type B : A → U indexed over A, we can form the type Πx:AB(x). This
denotes a function whose codomain type depends on which element of the
domain it is applied to. Elements of this type are of the form (λ a→ b (a)).
Vectors are one such type that we have already seen, and indeed, given the
type N and the type Vec A : N → U , can be written in Π-type notation as
Πn:N((Vec A) n). The function type is a special case of the Π-type, namely
when B = λ → U , as in this case the type of the codomain of B does not
depend on any elements of the domain.

Σ-Types

We also have a generalistion of the product type called the dependent pair
type, or the Σ-type, acting as a basic type former for dependent types.
Given a type A and a type B : A→ U indexed over A, we can form the type
Σx:AB(x). The Σ-type denotes a pair type where the second element’s type
depends on what the first element is. Elements of this type are of the form
(a , b (a)). An example of such a type would be the type FlexVec. Given
the type N and the type Vec A : N → U , we form the dependent pair type
Σn:N((Vec A) n) whose first element is a natural number n, and the second

10

Chapter 2 2.6. Inductive Types

element is a vector of length n.

FlexVec : Set → Set

FlexVec A = Σ N (Vec A)

The product type is a special case of the Σ-type, namely when B = λ → U .

Finite Types

We now present some finite types that are widely used in Type Theory.

The empty type 0 is the uninhabited type. It has no constructors and
therefore cannot have any elements. As we saw in Table 2.1, it is used to
show a proposition’s negation. We also always have a function from the
empty type to any other type. This mirrors the logic rule of “false implies
anything”: ∀q ∈ Bool, false =⇒ q.

case⊥ : {A : Set} → ⊥ → A

case⊥ ()

The unit type 1 is the type with one element ? : 1. It can only be constructed
in one way.

The last finite type we will mention here is the Bool type, or 2, with two
constructors, true and false. The two element type can also be constructed
using 1 and the sum type as 2 = 1 + 1. Its constructors would be inl(?)
and inr(?). Other finite types like 3, 4, 5, . . . , can be constructed similarly
as 3 = 1 + 2, and so on.

Lastly, we note that + can be defined using Bool as A+ B = Σb:Bool(λx→
if x then A else B), justifying the use of Σ, normally used to denote sums, for
Σ-types. Similarly, × can also be defined using Bool as A×B = Πb:Bool(λx→
if x then A else B), justifying the use of Π, usually used for products, for
Π-types.

2.6 Inductive Types

Another way we can define new types is by defining them inductively. In-
ductive types are the subject of this dissertation, and they are so central to
Martin-Löf Type Theory that the latter has been described as “a theory of
inductive definitions formulated in natural deduction” (Dybjer, 1994).

11

Chapter 2 2.6. Inductive Types

A (simple) inductive type X is one which can be defined by providing a list
of constructors, each of which is a function (possibly having zero arguments)
with codomainX, specifying how to form elements of this type. The simplest
example is the set of natural numbers N, whose constructors are zero and
suc.

data N : Set where

zero : N
suc : N → N

These are two of the so-called Peano axioms, which say that 0 is a natural
number, and that if n is a natural number, then so is its successor suc n.

In Martin-Löf Type Theory (Martin-Löf and Sambin, 1984), the type N, as
well as every other inductive type, is specified by giving four rules:

• The formation rule tells us how to form a type from other types or
families of types. (The formation rule for N simply states that N is a
type. The formation rule for A+B states that if A is a type and B is
a type, then A+B is also a type.)

• The introduction rules give meaning to the defined type by showing us
how to form elements of the type. (The introduction rules correspond
to a type’s constructors.)

• The elimination rule tells us how to define functions on the type, and
expresses a principle of proof by induction. (The elimination rule is
described by a type’s eliminator.)

• The equality rules relate the introduction and elimination rules, by
telling us how functions defined on the type operate on the elements
of the type i.e. it describes their computation.

A mutual inductive type is a collection of types defined simultaneously where
each one refers to the other(s). An example is the mutual definition of the
types Even and Odd.

data Even : Set

data Odd : Set

12

Chapter 2 2.6. Inductive Types

data Even where

ezero : Even

esuc : Odd → Even

data Odd where

osuc : Even → Odd

We will only consider inductive type definitions to be valid if they are defined
strictly positively . This roughly means that for an inductive type X, we
allow X to occur in the input types of its constructors, but only to the
right of arrows (→) (The Univalent Foundations Program, 2013, p. 166).
For example, we allow constructors like c : (N → X) → X for the type X,
but not d : (X → N)→ X or e : ((X → N)→ N)→ X.

The iterator for an inductive type is a higher-order function to which we can
reduce all recursion over the inductive type. It makes precise which functions
can be defined on an inductive type. The ability to pattern match on a type
in languages like Agda relies on the iterator, and any function defined by
pattern matching can also be defined using the iterator directly. To express
that an inductive type is defined uniquely in terms of its constructors and
cannot be formed in any other way, we define a more general, dependently
typed higher-order function, the eliminator . The eliminator can be derived
from the iterator if we also have a proof that the iterator is unique. For N,
the eliminator (which corresponds to the principle of induction on N) states
that if a predicate holds for zero, and if whenever it holds for n it also holds
for suc n, then it holds for all of N. In other words, the eliminator expresses
that we only need to consider the two constructors zero and suc to cover all
possible ways to construct a natural number.

2.6.1 W-Types

W-types are also very central to our dissertation. W-types are of interest to
us because any inductive type can be written as a W-type, so by assuming
the existence of the W-type we obtain all other inductive types.

Drawing from the concept of well-orderings and the principle of transfinite
induction introduced by Cantor, Martin-Löf (Martin-Löf, 1982) defined in
his Type Theory a type former for well-orderings, now known as W-types. A

13

Chapter 2 2.7. Agda

W-type Wx : AB(x) is formed by providing a type A : U and a type B : A→ U
indexed by A. To construct elements of Wx : AB(x), we use the constructor

sup : (a : A)→ (B(a)→Wx : AB(x))→Wx : AB(x).

We can think of W-types as labelled trees, with A being the set of node
labels and B(a) for a : A being the set of edge labels from the node labelled
a. Hence a tree is described by a choice of an a : A and a function b assigning
to each edge e : B(a) a child tree.

A variant of W-types to which we can reduce all inductive families are in-
dexed W-types. Given I : U , S : I → U , and P : (i : I) → S i → I → U , the
indexed W-type or WI-type WI : I → U has elements constructed by

sup : (i : I)(s : S i)(f : (j : I)→ P i s j →WI j)→WI i.

We give examples of and construct WI-types in chapter 6.

2.7 Agda

All the formal development in this project was carried out in Agda. Agda
is the ideal vehicle for our study, being a dependently-typed programming
language and proof assistant, implementing a version of intensional Martin-
Löf Type Theory. Agda disallows non-terminating programs by virtue of
being total, and writing an Agda program involves refining a well-typed
partial expression to obtain a well-typed total expression (Dybjer, 2018).
Agda code is in fact rarely run but type checked instead. Being based on
the propositions as types paradigm, if we have a proposition represented as a
type, and an element of this type represented as a program, and this program
type checks, this constitutes a proof that the proposition holds. Thanks to
these guarantees, the way to evaluate our results is to ensure that our Agda
code type checks at the relevant types.

This section briefly introduces the basic Agda constructs we will use through-
out the dissertation. For a more comprehensive introduction, we refer the
reader to Norell and Chapman (2009), Wadler et al. (2020), or The Agda
Team (2020).

In Agda, we define data types as follows.

14

Chapter 2 2.7. Agda

data N : Set where

zero : N
suc : N → N

We have already seen this and other definitions of types, and now provide
some more detail into the syntax. N is the name of our data type, and
its type is Set. Set is the first universe in Agda’s hierarchy of universes
Set = Set0 : Set1 : Set2 : . . . , which is an implementation of what we
discussed in Section 2.5. N has the two constructors zero and suc. We
represent the empty type 0 as

data ⊥ : Set where

and the type 1 with one constructor as

data > : Set where

tt : >.

Another important data type we will come across is Fin, the type of finite
sets, where Fin n = {0, 1, . . . , n-1}.

data Fin : N → Set where

zero : {n : N} → Fin (suc n)

suc : {n : N} → Fin n → Fin (suc n)

Implicit arguments that are required for the definition of a type but can
be automatically inferred by Agda are placed inside curly braces, like the
{n :N} above.

Functions can be defined using λ-abstraction, or else by pattern matching,
like so. (The underscores in the function name are placeholders for the
arguments. This type of notation is called mixfix notation.)

+ : N → N → N
zero + n = n

suc m + n = suc (m + n)

Another way we can define data types in Agda is using records, which gen-
eralise Σ-types and allow us to store named fields in the type. One example
of a record type is the implementation of the product type (discussed in
Section 2.5).

15

Chapter 2 2.8. Category Theory Background

record _×_ (A B : Set) : Set where

constructor _,_

field

proj : A

proj : B

The implementation of the sum type (discussed in Section 2.5) is shown
below.

data _]_ (A B : Set) : Set where

inj : A → A] B

inj : B → A] B

We use Agda’s equality type ≡ having a unique constructor refl. This
relation has various properties, such as symmetry, transitivity, congruence,
and substitutivity, which we will utilise in our equality proofs. This equality
type is in contrast with the one used in Agda’s Cubical mode, which we do
not use here but discuss in later sections.

data _≡_ {a} {A : Set a} (x : A) : A → Set a where

instance refl : x ≡ x

When using Emacs mode, we can type check a document which is not yet
complete. We do this by writing ? in the place of an expression. Agda will
then replace ? by a hole, an example of which is shown below, which we can
fill later with the correctly typed code.

+ : N → N → N
m + n = {!!}

2.8 Category Theoretic Semantics of Inductive Types

This final section gives a brief overview of the mathematical background that
informs our constructions in Chapter 5.

A category is a straightforward concept. A category C consists of objects
and arrows between the objects. Crucially, we need arrows that compose,
i.e. given objects A,B, and C, and arrows f : A → B and g : B → C, then
there must exist the arrow g ◦ f : A → C. The other requirements are that
composition of arrows is associative, i.e. given f : A → B, g : B → C, and

16

Chapter 2 2.8. Category Theory Background

h : C → D, we have h ◦ (g ◦ f) = (h ◦ g) ◦ f , and that for every object A,
we always have an identity arrow idA : A→ A such that for any f : A→ B,
f ◦ idA = idB ◦ f = f . Arrows are also called morphisms or maps.

A B C Df

g◦f

idA

g

idB

h◦g

h

idC idD

The main category we will be considering is the category of sets Set. The
type of objects in this category is Set, and the set of morphisms is the set
of functions, Set(A,B) = A → B for objects A and B. Composition of
morphisms is defined as function composition, and the identity morphism
for an object A is simply the identity function idA : A → A, defined by
idA a = a.

An initial object 0 is an object such that there exists exactly one morphism
from this object to any other object. In Set, this would be the empty set,
for which this morphism exists trivially since there are no elements in the
empty set (the morphism is precisely case⊥). Similarly, a terminal object 1
is an object such that there is exactly one morphism from any other object
to it. In Set, this would be the unit set. The morphism from an object type
A would map all the elements of A to the unique element in the unit set.

Set

0

1

Given categories C and D, a functor F : C → D associates to each object
A in C an object F (A) in D, and associates to each morphism f : A → B

in C a morphism F (f) : F (A) → F (B) in D. The latter must preserve the
identity morphism and composition of morphisms. Note how F is overloaded
to mean both a map on objects and a map on morphisms. Functors are
simply mappings between categories. An endofunctor is a functor that maps

17

Chapter 2 2.8. Category Theory Background

a category to that same category.

C D

A B F (A) F (B)
f

F F (f)

Given a category C and an endofunctor F : C→ C, an F -algebra is a tuple
(A,α) where A is an object in C and is called the carrier of the algebra, and
α : F (A)→ A is a morphism in C.

Algebras over a given endofunctor F : Set → Set form a category in their
own right. The objects are the tuples (A,α) as described above, and a
morphism m between two objects (A,α) and (B, β) maps A to B while
preserving the structure of α and β. We define such a morphism by noting
that since F is an endofunctor and m : A→ B is a morphism in Set, we can
apply F to m and get F m : F A → F B. Now since α : F (A) → A and
β : F (B)→ B, we can follow F m with β to get β ◦ (F m), or equivalently,
use α followed by m to get m◦α. Hence a morphism between objects (A,α)

and (B, β) is defined as a map m : A→ B such that β ◦ (F m) = m ◦ α.

F (A) F (B)

A B

α

F (m)

β

m

An initial object in this category of F -algebras, if it exists, is called the
initial algebra. Let us assume that the initial algebra exists, and let us call it
(I, ι), with I : Set and ι : F (I)→ I. Then Lambek’s lemma states that ι is a
special type of morphism, an isomorphism. This essentially means that F (I)

and I are structurally equal, and it makes I a fixed point of the endofunctor
F . Being initial, I is also the smallest fixed point of F , in that there is a
map from I to any other fixed point (because there is a map from I to any
other algebra).

18

Chapter 2 2.8. Category Theory Background

Category of F -algebras

(I, ι)

(A,α) (B, β)m

Now consider the simple inductive type N.

data N : Set where

zero : N
suc : N → N

This type is entirely described by its two constructors zero and suc. The
first picks the zero element while the second maps a number to its successor.
We can write both constructors as functions by rewriting zero as a function
from the terminal object 1 to N, obtaining two functions which completely
specify the type N.

z : 1→ N

s : N→ N

These functions can be rewritten using the exponential notation

z : N1

s : NN

so that we can now describe this pair of functions by a single function using
the product type (and some simple algebra that holds in any Cartesian closed
category).

z× s : N1 × NN

z× s : N1+N

z× s : 1 + N→ N

19

Chapter 2 2.8. Category Theory Background

The sum of powers of N on the left hand side of the resultant function defines
an endofunctor on Set. This endofunctor, which we will call F , takes an
object X in Set and maps it to the sum type 1 +X.

F : Set→ Set

F (X) = 1 +X

Given the category Set and the endofunctor F , we obtain F -algebras of the
form (A,α) with A : Set and α : 1 + A → A, and hence we can form the
category of F -algebras. One such F -algebra could have carrier Bool and
constructors true : Bool and not : Bool → Bool (with not defined as the
usual boolean negation). The initial algebra of this category exists and is
precisely the inductive type N, where the carrier is N : Set, and the morphism
F (N) → N = 1 + N → N is comprised of the two constructors zero : N and
suc : N → N. N is the fixed point of the endofunctor F (X) = 1 + X, so
that F (N) ' N. In Chapter 5, we construct the initial algebra for any simple
or mutual inductive type, constructively proving that every such inductive
type has an initial algebra.

20

3
Literature Review

This chapter aims to further introduce the context of our project. We analyse
and synthesise work done in relation to our research, as well as locate our
project within the literature.

A type theory is a formal system that serves as the basis for automated
type systems of modern programming languages, as well as the foundation
of proof assistants like Coq and Agda, which are tools used for computer-
assisted mathematical proofs and software verification. Per Martin-Löf’s
Type Theory, the type theory in which our project takes place, is a foun-
dational language for programming and constructive mathematics, based on
the Brouwer-Heyting-Kolmogorov interpretation of logic.

After learning of the analogy between formulae and types from his colleague
W. A. Howard, and subsequently of the equivalence of natural deduction
and lambda calculus, Martin-Löf began working on normalisation results for
systems of natural deduction (Dybjer et al., 2012). His initial attempt at
an intuitionistic theory of types (Martin-Löf, 1971) was found to contain a
paradox by J. Y. Girard. He fixed this paradox and laid out the founda-
tions of what we now refer to as Martin-Löf Type Theory (or intuitionistic
type theory) in Martin-Löf (1972), and introduced different versions of it in
following years (Martin-Löf, 1982; Martin-Löf and Sambin, 1984).

Martin-Löf’s formulations of Type Theory include inductive definitions of,
among others, the set of natural numbers N, finite sets Fin(n), and the
disjoint union of two types A+B. Inductive definitions are fundamental to
modern type theory and functional programming languages, and they have
been studied and generalised to obtain a more expressive notion of types. A
survey of inductive types within intensional and extensional type theories,
as well as the more recent development of homotopy type theory, is available

21

Chapter 3

in Awodey et al. (2012). Our research helps to gain a better, more complete
understanding of inductive types.

One of the established results in this area is due to Dybjer (Dybjer, 1997). He
notes that in Martin-Löf and Sambin (1984), Martin-Löf demonstrates how
to encode the natural numbers and the ordinal numbers using W-types. Dyb-
jer generalises this idea and proposes a general criterion for using W-types to
define any inductive type, by referring to their category theoretic semantics.
He shows that for any strictly positive functor Φ on the category Set (built
using only constants, variables, +, ×, and→), there exists a set A and a fam-
ily of setsB indexed byA such that for all setsX, Φ(X) ' Σx : A(B(x)→ X).
The right hand side being isomorphic to Wx : AB(x) justifies the fact that
any inductive type represented by a strictly positive endofunctor can be rep-
resented as a W-type. As a corollary to this result, he obtains that every
strictly positive endofunctor has an initial algebra. Despite showing the re-
lation between inductive types and W-types, this paper does not contain
a clear specification of inductive types, nor does it cover nested inductive
types, such as the type for rose-trees, in its treatment of simple inductive
types.

Our research is largely inspired by Kaposi et al. (2019). In this paper, the
authors use a quotient inductive-inductive type (QIIT) to define a small type
theory, which they call the theory of signatures, and show that if a given
type theory supports this QIIT, then it supports all finitary QIITs. They
achieve this by using induction on the theory of signatures to define algebras,
morphisms, the initial algebra, the recursor, and some other constructions.
QIITs generalise simple inductive types, but in particular, they admit not
only point constructors (like the ones we have seen so far in the report), but
also equality constructors (which specify how to equate two elements). These
constructors and their homotopical interpretations are studied in homotopy
type theory, but we will not be looking into them in this project as they
are more general than the types we tackle. The focus of our project is an
analogous result to the one in this paper, but for less general types: if a type
theory supports W-types, then it can express all inductive types; and if a
type theory supports indexed W-types, it can express all indexed inductive
types. These analogous results have in fact been mentioned in the paper,
but have not been explicitly formalised and shown. Our research will fill in

22

Chapter 3

this gap in the formalisation of inductive types.

Our approach will involve following a similar sequence of steps taken in Ka-
posi et al. (2019), by first defining a small theory of signatures, and then
using induction on its structure for our constructions. Our project builds on
established results regarding inductive types, like the result in Dybjer (1997),
while combining them with the new development of a theory of signatures
in the style of the above paper. Dybjer (1997) motivates our project and
provides the mathematical theory behind what we aim to formalise algorith-
mically. More specifically, given a strictly positive endofunctor, we construct
its initial algebra by defining algebras for the endofunctor, constructing the
initial algebra’s carriers and constructors, constructing a morphism from this
algebra to any other algebra, and showing that this morphism is unique.

A complete description of strictly positive inductive types is given in Abbott
et al. (2003) and extended in Abbott et al. (2005). The authors define a
container by a type of ‘shapes’ S and a family of ‘position types’ indexed
by S, P s, and write the container as (s : S . P s) or simply (S . P). For
example, the type List(X) of lists with elements of type X can be represented
by the length of the list n : N along with some function σ : Fin(n) → X,
where Fin(n) = {0, 1, . . . , n − 1}, which gives the element present in the
list at any given position. Hence we can express List(X) as the container
(n : N . Fin(n)). Their main result states that any strictly positive inductive
type can be interpreted as a container, so that containers can be regarded
as a normal form for these types. A container gives rise to a container
functor TS .P (X) = Σs : S(P s → X) denoted by JS . P K. As shown by
Abbott (2003), the initial algebra of a container functor JS . P K is given
by the W-type Wx : SP (x). Abbott et al. (2005) generalise on the result of
Dybjer (1997) by considering coinductive types and nested occurrences of
inductive and coinductive types, neither of which were studied in Dybjer
(1997), as well as by analysing the categorical infrastructure of Martin-Löf
categories required for their proofs. These papers offer a more detailed and
comprehensive mathematical definition of inductive types and W-types, and
these insights will be employed in our definitions of signatures and W-types.

The more general indexed inductive types are explored in Altenkirch and
Morris (2009). The semantics of inductive types as initial algebras for poly-
nomial endofunctors can be extended to indexed inductive types (or inductive

23

Chapter 3

families). Instead of considering functors on the category of sets, the authors
consider functors on the category of indexed families, i.e. families indexed
by a given type. Similar results from Abbott et al. (2005) carry over from
inductive types to inductive families. The main result is that any indexed
inductive type can be represented as an indexed W-type, which is an indexed
version of the W-types studied in Abbott et al. (2005). While we do not con-
sider indexed inductive types in our project, we do model indexed W-types,
which are studied extensively in this paper and which inform our definition
of WI-types. Perhaps surprisingly, W-types are still enough to represent the
more general indexed inductive types. This is due to a reduction from in-
dexed W-types to W-types, which was presented in Altenkirch and Morris
(2009) and formalised further in Altenkirch et al. (2015).

24

4
The Theory of Signatures

Our first task was to construct a framework in which we could express any
simple or mutual inductive type. We begin this section by looking at a few
different inductive types to familiarise ourselves with what we are trying to
formalise. The rest of the section details our definition of a small theory of
signatures in which we can express these types.

4.1 Suite of Examples

The following inductive types will be used as running examples throughout
the rest of the dissertation.

N – The first type is the familiar type of natural numbers à la Peano. This
is one of the simplest and most well-known inductive types.

data N : Set where

zero : N
suc : N → N

Lam – Next is the ‘naive’ type of λ-terms. We have constructors for variables,
abstraction, and application. It is ‘naive’ in the sense that there are more
elaborate ways to define λ-terms that would be a more correct representation,
however this will suit our purposes.

data Lam : Set where

var : String → Lam

abs : String → Lam → Lam

app : Lam → Lam → Lam

InfTree – Our third inductive type is the type of infinitely branching trees.
Such a tree is either empty, or else each of its nodes branches with a countably

25

Chapter 4 4.1. Suite of Examples

infinite factor. This type is different to the other types presented here due
to its second constructor having a function as an argument.

data InfTree : Set where

ε∞ : InfTree

sp∞ : (N → InfTree) → InfTree

NF-NE – Next we have our first mutual inductive type. It is the type of
β-normal forms and neutral λ-terms. To define mutual inductive types in
Agda, we first define all the types and then define their constructors. Note
how the constructors for NF use NE and vice versa.

data NF : Set

data NE : Set

data NF where

ne : NE → NF

lam : String → NF → NF

data NE where

var : String → NE

app : NE → NF → NE

Tree-Forest – The last inductive type in our suite of examples is the tree-
forest type emulating the rose-tree nested inductive type. This is another
mutual inductive type, however this time it is also parameterised by a type
A (A is of type U instead of Set for reasons detailed later).

data Tree (A : U) : Set

data Forest (A : U) : Set

data Tree A where

sp : Forest A → Tree A

data Forest A where

εF : Forest A

consF : Tree A → Forest A → Forest A

The rose-tree nested inductive type is shown below. We emulate having a

26

Chapter 4 4.2. Signatures

List argument using the Forest type, and the sp constructor in Tree is the
same as node in RoseTree.

data RoseTree : Set where

node : List (RoseTree) → RoseTree

We do not consider nested inductive types in our dissertation, but we aim
to do so in future work. Nested inductive types can also be ‘indirectly’
represented using mutual inductive types, like in the case of rose-trees.

4.2 Signatures

Now that we have looked at a few examples, we can start discussing how
to give a general framework for describing inductive types. In category the-
ory terms, what we specify here is the endofunctor corresponding to the
constructors of a particular inductive type over the category Set.

Firstly, each inductive definition has a number of mutual types which we call
sorts. N has one sort while NF-NE has two. Each of these sorts then has a
number of constructors related to it. The signature Sig corresponding to an
inductive definition is thus defined as the number of sorts, and a function
associating each sort to a list of constructors.

record Sig : Set where

field

sorts : N
cns : Fin sorts → List (Con sorts)

A constructor for a fixed sort is given by a list of arguments. We omit the
resultant type of the constructor from this list, as this type will always be
the sort we are defining.

data Con (n : N) : Set where

cn : List (Arg n) → Con n

The arguments of a constructor can refer to the sort/s we are defining. If
they do not, like String in the constructor abs in Lam, they are non-recursive
arguments. If they do, like N in the constructor suc of N, or (N→ InfTree)

in sp∞ of InfTree, or NF in app of NE, they are recursive arguments. Non-
recursive arguments are described simply by their type. For recursive argu-

27

Chapter 4 4.3. Example Signatures

ments, their specification depends on whether they are function arguments
or not. We associate a list of types to recursive arguments, where for func-
tion arguments like (N → InfTree) it contains the types of the arguments
of this function, in this case (N :: []), whereas the list is empty for recursive
arguments that are not functions. Lastly, every recursive argument must
also be associated with the sort it is referring to.

data Arg (n : N) : Set where

nrec : U → Arg n

rec : List U → Fin n → Arg n

We make use of U instead of Set to describe the type of arguments of con-
structors. Had we used Set in the place of U in Arg above, Arg would have
type Set1 to accomodate for its constructors having arguments of type Set.
Set1 is bigger than Set and would not fit into some types we define later. To
avoid this, we use U instead, which mimics a universe. Elements of U repre-
sent (while not actually being) other types, and the function El associates
this representation to the actual type. The only types we include in U are the
ones we use in our examples, i.e. N and String, but U can easily be extended
to accomodate for more types.

data U : Set where

nat : U

string : U

El : U → Set

El nat = N
El string = String

4.3 Example Signatures

The signature for N is given below.

NSig : Sig

sorts NSig = 1

cns NSig = λ {zero → cn [] -- zero

:: cn (rec [] zero :: []) -- suc

:: []}

28

Chapter 4 4.3. Example Signatures

N has one sort which can be constructed using either zero or suc. zero has
no arguments, hence its list of arguments is empty, and it is represented as
cn []. suc has one recursive argument and is represented as cn (rec [] zero

:: []). The [] in rec [] zero reflects that the recursive argument is not a
function, and the zero refers to the sort the recursive argument corresponds
to (in this case, the only sort).

The signature for InfTree is given below.

InfTreeSig : Sig

sorts InfTreeSig = 1

cns InfTreeSig = λ {zero → cn [] -- ε∞
:: cn (rec (nat :: []) zero :: []) -- sp∞
:: []}

This signature is similar to N’s signature, except this time, the constructor
sp∞ has a recursive function argument represented as rec (nat :: []) zero.

The signature for NF-NE is given below.

consNF : Fin 2 → List (Con 2)

-- NF constructors

consNF zero = cn (rec [] (suc zero) :: []) -- ne

:: cn (nrec string :: rec [] zero :: []) -- lam

:: []

-- NE constructors

consNF (suc zero) = cn (nrec string :: []) -- var

:: cn (rec [] (suc zero) :: rec [] zero :: []) -- app

:: []

NFNESig : Sig

sorts NFNESig = 2

cns NFNESig = consNF

This inductive type contains two sorts, with NF being the 0th sort and NE

being the 1st. The function consNF assigns constructors to each sort. The
constructors have both recursive and non-recursive arguments. Note how
we represent constructors with recursive arguments, like ne : NE → NF rep-
resented as cn (rec [] (suc zero) :: []). The (suc zero) refers to this
recursive argument being of type NE, the 1st sort.

29

5
Constructions on Signatures

Sig provides a way to encode any simple or mutual inductive type. Through-
out this chapter, we will use Sig’s structure to define various constructions.
In particular, we define a structure for algebras for a given signature, as
well as morphisms between these algebras. We then construct the initial
algebra, and a morphism from the initial algebra to any other algebra of the
signature, called the iterator. Finally, we prove that the iterator is unique.

5.1 Algebras

As we saw in Section 2.8, an algebra over a given endofunctor F consists
of a carrier A and a map α : F (A) → A. Translating this into Agda code,
endofunctors are represented by signatures as defined in the previous chap-
ter, and α is represented by constructors that can be written as maps and
combined together using the product type. Hence, an algebra over a given
signature consists of a carrier type and constructors forming this type.

As an example, an algebra for N can be described as a record type consisting
of a type N and functions of type N and N → N.

record NAlg : Set where

field

N : Set

z : N

s : N → N

A slightly more complex example is an algebra for NF-NE which has two sorts.

record NormalFormAlg : Set where

field

F : Set

30

Chapter 5 5.1. Algebras

E : Set

n : E → F

l : String → F → F

v : String → E

a : E → F → E

To encapsulate this structure in a general way, we define an algebra by a
record type having two components. Given a sort number from the signature,
the first component assigns to it a type, and the second component assigns
to every constructor of the sort, a function taking the relevant arguments
and generating an element of this type, in other words an actual constructor
for the corresponding sort.

record Alg (S : Sig) : Set where

field

carriers : Fin (sorts S) → Set

cons : (srt : Fin (sorts S)) (c : Con (sorts S)) →
c ∈ (cns S) srt → conType srt carriers c

The field carriers is straightforward, it associates a type to each sort. The
field cons is more subtle because it needs to associate a function to each
of the sort’s constructors. The subtlety arises when having to express that
we cannot just accept any constructor as an argument for cons, but only
constructors associated to a particular sort. The constructors for a given
sort srt in a signature S are represented as the list (cns S) srt in Sig. One
possible approach is to refer to the constructor’s index in this list instead
of its actual constructor representation, and look up its index in the list
to obtain the constructor representation. This would, however, result in
complex code when using Alg later. This is mainly due to lists in Agda
being constructed using the [] and :: constructors, so that using them in
Agda is facilitated, but using functions like lookup is less primitive. We
therefore exploit the constructors of List and define the data type _∈_.

data _∈_ {l}{A : Set l}(a : A) : List A → Set where

hd : {l : List A} → a ∈ (a :: l)

tl : {l : List A}{b : A} → a ∈ l → a ∈ (b :: l)

This type provides the ‘proof’ that a constructor is in a given list of con-
structors, by providing its position, which can either be hd if it is at the head

31

Chapter 5 5.1. Algebras

of the list, or tl _ if it is in the rest of the list, where _ is the proof that the
constructor is in the tail of the list.

Lastly, the type of the function we associate to each of the sort’s constructors
is conType srt carriers c. We are using the just defined carriers to provide
conType our sorts’ types. This function takes a constructor’s representation
and produces the type of the constructor as a function. It goes through the
constructor one argument at a time, using argType to find out the type of
each argument. If the argument is non-recursive, we use El to return its type,
whereas if it is recursive, we use conTypeAux to go through its list of possible
arguments in case it is a recursive function argument. Upon reaching the
end of the list of arguments both in conType and conTypeAux, we return the
type of the sort we are constructing.

conTypeAux : {n : N} → (Fin n → Set) → List U → Fin n → Set

conTypeAux f [] s = f s

conTypeAux f (set :: sets) s = El set → conTypeAux f sets s

argType : {n : N} → (Fin n → Set) → Arg n → Set

argType f (nrec set) = El set

argType f (rec lst fin) = conTypeAux f lst fin

conType : {n : N} → Fin n → (Fin n → Set) → Con n → Set

conType s f (cn []) = f s

conType s f (cn (arg :: xs)) = argType f arg →
conType s f (cn xs)

As an example of their functionality, running

conTypeAux {suc zero} (λ {zero → InfTree}) (nat :: []) zero

gives us N → InfTree, the type of InfTree’s constructor sp∞’s recursive
function argument. Also, running

conType {suc (suc zero)} zero (λ {zero → NF ; (suc zero) → NE})

(cn (nrec string :: rec [] zero :: []))

gives String → NF → NF, the type of the constructor lam of NF-NE.

It is important to note that the record type Alg groups types of values to-
gether, not actual values. This means that Alg is a structure that, given

32

Chapter 5 5.1. Algebras

a Sig, will provide the types of elements necessary to construct an algebra
for the signature. It is then up to us to provide these elements of the given
types. We now show some examples to illustrate how to use the Alg record
type. To construct an N-algebra, we have to provide a type T : Set as well as
functions of type T and T → T. First, we construct the familiar N type, which
is actually just the initial N-algebra, where T = N, zero : T, and suc : T →
T.

NInit' : Alg NSig

NInit' = record { carriers = λ {zero → N} ;

cons = λ {zero → λ c → λ {hd → zero ;

(tl hd) → suc}} }

We can also construct another N-algebra with T = Bool, true : Bool, and
not : Bool → Bool, where not true = false and not false = true. Just
like the initial N-algebra above represents the natural number Peano rep-
resentation of zero, suc(zero), suc(suc(zero)), . . . , this N-algebra represents
the natural numbers as boolean values depending on whether they are even:
true, not(true), not(not(true)), Each N-algebra is a different way of
representing the natural numbers.

BoolNAlg' : NAlg'

BoolNAlg' = record { carriers = λ {zero → Bool} ;

cons = λ {zero → λ c → λ {hd → true ;

(tl hd) → not}} }

Another example of the use of Alg is the initial NF-NE-algebra shown below.
This time, we have to provide two types S and T, and functions of types T

→ S, String → S → S, String → T, and T → S → T.

NormalFormInit' : Alg NFNESig

NormalFormInit' = record { carriers = λ {zero → NF ;

(suc zero) → NE} ;

cons = λ {zero → λ c → λ {hd → ne ;

(tl hd) → lam} ;

(suc zero) → λ c → λ {hd → var ;

(tl hd) → app}} }

33

Chapter 5 5.2. Morphisms

5.2 Morphisms

We recall from Section 2.8 that algebras over a given endofunctor F form
a category, where the objects are the algebras themselves, and a morphism
between two algebras (A,α) and (B, β) is a mapping between the carriers
m : A → B, such that β ◦ (F m) = m ◦ α. Having defined algebras over a
given endofunctor, we now construct morphisms between the algebras.

A morphism from N-algebra n1 to N-algebra n2 is described by two main
components. Firstly, a map f between the carriers of the algebras N n1 and
N n2. Secondly, a proof of equality for each constructor of the carriers, en-
suring that, given an argument x of type N n1, applying f to the constructors
of n1 applied to argument x equates to applying the constructors of n2 to f

applied to x.

record NMor (n n : NAlg) : Set where

field

f : N n → N n

f_z : f (z n) ≡ z n

f_s : (x : N n) → f ((s n) x) ≡ (s n) (f x)

A morphism from NF-NE-algebra nf1 to NF-NE-algebra nf2 is described as
shown below. In this case we have two maps between carriers, one for each
sort, and four equality proofs, one for each constructor.

record NormalFormMor (nf nf : NormalFormAlg) : Set where

field

f_f : F nf → F nf

f_e : E nf → E nf

f_n : (e : E nf) → f_f ((n nf) e) ≡ (n nf) (f_e e)

f_l : (s : String) (f : F nf) → f_f ((l nf) s f) ≡
(l nf) s (f_f f)

f_v : (s : String) → f_e ((v nf) s) ≡ (v nf) s

f_a : (e : E nf) (f : F nf) →
f_e ((a nf) e f) ≡ (a nf) (f_e e) (f_f f)

To generalise these specific morphism examples, we present our definition of
a general morphism Mor from the S-algebra A1 to the S-algebra A2 as a record
type containing two fields.

34

Chapter 5 5.2. Morphisms

record Mor (S : Sig) (A A : Alg S) : Set where

field

f : (srt : Fin (sorts S)) →
(carriers A) srt → (carriers A) srt

eq : (srt : Fin (sorts S)) (c : Con (sorts S))

(p : c ∈ (cns S) srt) (xs : args srt (carriers A) c) →
(f srt) (apply S A srt c ((cons A) srt c p) xs) ≡
apply S A srt c ((cons A) srt c p)

(map S A A srt c f xs)

The field f maps each carrier of A1 to the corresponding carrier in A2. The
field eq provides an equality proof. Given a sort srt and one of its con-
structors c, let us call the corresponding constructor in A1 c1 and that in
A2 c2. Also, call the arguments in A1 to be passed to c1 args1, and denote
application by @. Allowing for some abuse of notation, eq provides a proof
of

f @ (c1 @ args1) ≡ c2 @ (f @ args1).

In order to define eq, we had to define a number of intermediate functions.
We first look at the function args, which takes a constructor and returns a
product type of the arguments to be passed to that constructor. It does this
by going through the constructor’s arguments one by one and using argType

(defined previously) on each argument.

args : {n : N} → Fin n → (Fin n → Set) → Con n → Set

args s f (cn []) = >
args s f (cn (x :: xs)) = argType f x × args s f (cn xs)

As an example, the type of arguments of the constructor lam : String → NF

→ NE can be obtained by running

args {suc (suc zero)} zero (λ {zero → NF ; (suc zero) → NE})

(cn (nrec string :: rec [] zero :: []))

to get String × NF × >. (The > at the end is due to our definition of args,
but an argument of type > can easily be provided: tt.) We note that args

and conType are defined very similarly, in fact, args only differs from conType

in that it eliminates the return type of the constructor so we only have its
arguments, and uncurries the arguments.

35

Chapter 5 5.2. Morphisms

The next function we look at is apply. This applies the constructor c having
type conType srt (carriers A) c to the supplied arguments. When the
constructor has no arguments, we do not perform any applications and can
simply return the constructor, which has type (carriers A) srt (replace c

in conType srt (carriers A) c with cn [] and look at conType’s definition).
When the constructor has one or more arguments, the provided arguments
args are in the form of a tuple, so that we can apply each argument at a
time to the constructor until the end of the list of arguments.

apply : (S : Sig) (A : Alg S) (srt : Fin (sorts S))

(c : Con (sorts S)) → conType srt (carriers A) c →
args srt (carriers A) c → (carriers A) srt

apply S A srt (cn []) type argsEq = type

apply S A srt (cn (x :: xs)) type (arsX , arsXs) =

apply S A srt (cn xs) (type arsX) arsXs

Running

apply NSig NInit' zero (cn []) zero tt

returns 0 (the first natural number, not the constructor), while running

apply NFNESig NormalFormInit' zero (cn (nrec string ::

rec [] zero :: [])) lam ("x" , ne (var "y") , tt)

applies the arguments ("x" , ne (var "y") , tt) to the constructor lam :
String → NF → NE and returns lam "x" (ne (var "y")).

The last function we need is map. For two S-algebras A1 and A2 and sort srt,
this function maps arguments of type (carriers A1) srt to arguments of type
(carriers A2) srt. Looking back at our NMor example, map is emulating the
(f x) in f_s :(x : N n) → f ((s n) x) ≡ (s n) (f x). map pattern
matches on the constructor and goes through its arguments one by one.
Similarly to what we saw for the definition of conType, it makes use of the
auxiliary functions mapArgType, which deals with individual arguments, and
mapConTypeAux, which takes care of recursive function arguments.

module _(S : Sig) (A A : Alg S) (srt : Fin (sorts S)) where

mapConTypeAux : (fin : Fin (sorts S)) (lst : List U)

(f : (srt : Fin (sorts S)) →

36

Chapter 5 5.2. Morphisms

(carriers A) srt → (carriers A) srt) →
conTypeAux (carriers A) lst fin →
conTypeAux (carriers A) lst fin

mapConTypeAux fin [] f cta = f fin cta

mapConTypeAux fin (x :: xs) f cta =

λ s → mapConTypeAux fin xs f (cta s)

mapArgType : (a : Arg (sorts S))

(f : (srt : Fin (sorts S)) →
(carriers A) srt → (carriers A) srt) →
argType (carriers A) a →
argType (carriers A) a

mapArgType (nrec x) f ars = ars

mapArgType (rec lst fin) f ars = mapConTypeAux fin lst f ars

map : (c : Con (sorts S))

(f : (srt : Fin (sorts S)) →
(carriers A) srt → (carriers A) srt) →
args srt (carriers A) c → args srt (carriers A) c

map (cn []) f ars = ars

map (cn (x :: xs)) f (arType , ars) =

mapArgType x f arType , map (cn xs) f ars

As with the definition of Alg, Mor provides the structure for a morphism
between two given algebras, and it is up to us to populate the structure with
elements. Consider the following morphism between two algebras that we
have already seen, NInit’ and BoolNAlg’. The function even between the
carriers N and Bool encapsulates the relationship between the two algebras:
even numbers are mapped to true, and odd numbers are mapped to false.
The equality proofs, the types of which are worked out by eq, hold trivially
using refl. This stands witness to how much we can express using types—
using a general way of expressing eq pays off as Agda can, in cases which are
not too complex, work out the equalities automatically.

even : N → Bool

even zero = true

even (suc n) = not (even n)

37

Chapter 5 5.3. The Initial Algebra

MorNEven'' : Mor NSig NInit' BoolNAlg'

MorNEven'' = record { f = λ {zero → even} ;

eq = λ {zero → λ c → λ {hd ar → refl ;

(tl hd) ar → refl}} }

5.3 The Initial Algebra

Alg and Mor correspond to the objects and maps in the category of F -algebras
for a given endofunctor F . Now that we have a complete picture of the F -
algebra, we can define its initial object, the initial algebra. The initial algebra
is characterised by the property that there exists exactly one morphism from
this algebra to any other algebra. This morphism will be dealt with later
when discussing the iterator, for now we focus on the initial algebra’s carriers
and constructors, i.e. we construct a pair (I, ι).

Being an algebra, the initial algebra is of type Alg and hence consists of
carriers and constructors. We note that this time, contrary to what we did
for Alg and Mor, we are not defining the framework for a particular structure,
but actually populating a framework we have previously defined, Alg. Indeed,
we are not defining a record type of type Set but an element of type Alg.

The idea here is that given a signature of type Sig, we emulate the induc-
tive type this signature is representing, i.e. its sorts and constructors. For
example, consider N’s signature NSig below.

NSig : Sig

sorts NSig = 1

cns NSig = λ {zero → cn [] -- zero

:: cn (rec [] zero :: []) -- suc

:: []}

We want to construct some data type JNSigK acting as the carrier of the
algebra, and constructors z and s as follows

JNSigK : Set

z : JNSigK
s : JNSigK → JNSigK

38

Chapter 5 5.3. The Initial Algebra

that emulate the inductive type

N : Set

zero : N
suc : N → N.

To construct the data type JNSigK, we have to keep in mind what happens
in Agda when we pattern match on an element n of N. The value n is
replaced by its two possible values—either zero, or suc n’ for some other
natural number n’. In the latter case, n’ is the argument that is passed to
suc to produce an element of type N. This simple example illustrates how
an element of type N contains the arguments that need to be passed to its
constructor. Hence in general, when constructing an element of type JSK for
some signature S, the element must also contain this same data. This is why
we define J_K_ and I-Args mutually as shown below.

data J_K_ (S : Sig) : Fin (sorts S) → Set

data I-Args (S : Sig) : (srt : Fin (sorts S)) (c : Con (sorts S))

→ c ∈ cns S srt → Set

data J_K_ S where

con : (srt : Fin (sorts S)) (c : Con (sorts S))

(p : c ∈ cns S srt) → I-Args S srt c p → J S K srt

data I-Args S where

arg : {srt : Fin (sorts S)} {c : Con (sorts S)}

{p : c ∈ cns S srt} → args srt (J S K_) c →
I-Args S srt c p

Given a signature S and a sort srt, JSK srt is the type standing for sort srt

in S. For instance, JNSigK zero stands for N in the example above, while
JNFNESigK zero stands for NF and JNFNESigK (suc zero) stands for NE in NF-NE.
To construct an element of JSK srt, we specify the sort number, constructor,
position of the constructor in the list of constructors, and arguments for
the constructor using the type I-Args. We could not simply add args srt

(J S K_) c to the constructor con of J_K _ due to the usage of the type J_K _
in the function call, the same type we are just defining. We therefore define
the data type I-Args mutually with J_K _.

39

Chapter 5 5.3. The Initial Algebra

The carriers part of the initial algebra Initial is thus complete. What
remains is defining the constructors of these carriers, which is achieved using
the function makeCons.

Initial : (S : Sig) → Alg S

Initial S = record { carriers = λ srt → J S K srt ;

cons = λ srt c p → makeCons S srt c p }

Before we get into the definition of makeCons, we look more closely at what
we want to define. We walk through the specific case of defining the initial
algebra for NSig. We set the type of the only carrier to JNSigK zero and have
a look at the type of the constructors we have to provide.

tstN : Alg NSig

tstN = record { carriers = λ {zero → J NSig K zero} ; -- N

cons = λ {zero → λ c → λ {hd → {!!} ; -- z

(tl hd) → {!!}}} } --s

Using our previous definition of Alg, Agda tells us that the type of the
first goal is JNSigK zero and the type of the second goal is JNSigK zero →
JNSigK zero. The first constructor represents the zero constructor which has
no arguments, while the second constructor represents suc which has one
recursive argument. We start defining the constructors as follows.

tstN : Alg NSig

tstN = record { carriers = λ {zero → J NSig K zero} ; -- N

cons = λ {zero → λ c →
λ {hd → con zero c hd (arg {!!}) ; -- z

(tl hd) → λ n' →
con zero c (tl hd) (arg {!!})}} } -- s

The zero constructor takes no arguments and is hence not a function. The
type of arguments we have to provide is args zero (J S K_) (cn []), which
computes to >, hence we simply write tt. The suc constructor is a function
taking n’ : JNSigK zero. The type of arguments we have to provide for this
constructor is args zero (J S K_) (cn (rec [] zero :: [])), which computes
to JNSigK zero × >. The arguments we provide should therefore be n’ , tt.

tstN : Alg NSig

tstN = record { carriers = λ {zero → J NSig K zero} ; -- N

40

Chapter 5 5.3. The Initial Algebra

cons = λ {zero → λ c →
λ {hd → con zero c hd (arg tt) ; -- z

(tl hd) → λ n' →
con zero c (tl hd) (arg (n' , tt))}} } -- s

We now move on to our implementation of makeCons. Our aim is to pro-
vide constructors like the ones we saw in the example above. makeCons takes
a constructor and passes it on to makeConsAux. The function makeConsAux

takes two lists of arguments: l is the part of the constructor it has already
processed, and l is the unprocessed part of the constructor. For a construc-
tor cn x, makeCons calls makeConsAux with l = [] and l = x, as initially
the whole constructor is unprocessed. makeConsAux then processes the con-
structor one argument at a time, moving processed arguments from l to l,
while at the same time updating the arguments for l, which it obtains as
inputs since these constructors are functions. Once it has gone through the
whole constructor and l is empty, it constructs an element of type JSK srt
containing all the accumulated arguments.

makeConsAux : (S : Sig) (srt : Fin (sorts S))

(l l : List (Arg (sorts S))) →
cn (l ++ l) ∈ cns S srt →
args srt (J_K_ S) (cn l) →
conType srt (J_K_ S) (cn l)

makeConsAux S srt l [] p ars = con srt (cn l) p (arg ars)

makeConsAux S srt l (x :: xs) p ars =

λ a → makeConsAux S srt (l ::r x) xs p (argsSnoc S srt l x ars a)

makeCons : (S : Sig) (srt : Fin (sorts S)) (c : Con (sorts S)) →
c ∈ cns S srt → conType srt (J_K_ S) c

makeCons S srt (cn x) p = makeConsAux S srt [] x p tt

makeConsAux uses the helper function argsSnoc which, given arguments for
cn l and an argument for the Arg x, returns arguments of type cn (l ::r x).

argsSnoc : (S : Sig) (srt : Fin (sorts S))

(l : List (Arg (sorts S))) (x : Arg (sorts S)) →
args srt (J_K_ S) (cn l) → argType (J_K_ S) x →
args srt (J_K_ S) (cn (l ::r x))

41

Chapter 5 5.4. The Iterator

argsSnoc S srt [] x ars ar = ar , ars

argsSnoc S srt (l :: ls) x (arl , arls) ar =

arl , argsSnoc S srt ls x arls ar

It also uses two rewrite rules, which allow us to prove equalities and subse-
quently extend Agda’s evaluation relation using these new rules. The first
rewrite rule ‘convinces’ Agda that appending an empty list to any list leaves
the list unchanged, while the second says that appending an element a to a
list xs and then appending the list ys to the result is equivalent to prepending
a to ys, and then appending this to xs.

appendNilPf : {A : Set} (l : List A) → l ++ [] ≡ l

appendNilPf [] = refl

appendNilPf (x :: xs) = cong (_::_ x) (appendNilPf xs)

postulate appendNil : {A : Set} (l : List A) → l ++ [] ≡ l

{-# REWRITE appendNil #-}

snocAppendPf : {A : Set} (xs ys : List A) (a : A) →
(xs ::r a) ++ ys ≡ xs ++ a :: ys

snocAppendPf [] ys a = refl

snocAppendPf (l :: ls) ys a =

cong (_::_ l) (snocAppendPf ls ys a)

postulate snocAppend : {A : Set} (xs ys : List A) (a : A) →
(xs ::r a) ++ ys ≡ xs ++ a :: ys

{-# REWRITE snocAppend #-}

These two rules allow us more flexibility when providing the proof cn (l ++

l) ∈ cns S srt in makeConsAux.

5.4 The Iterator

Although we have constructed the carriers and constructors of the initial
algebra, we have yet to construct its defining feature, a unique morphism
from this algebra to any other algebra. In this section, we construct such a
morphism, which is called the iterator, and in the next section we show that
it is unique. An object in a category having a morphism from it to any other

42

Chapter 5 5.4. The Iterator

object is called weakly initial . By the end of this section, we will therefore
have defined a weakly initial algebra.

Being a morphism, the iterator It is of type Mor and hence consists of two
components, a function f from the carriers of Initial S to the carriers of the
given algebra A, and an equality proof ensuring that f preserves structure.

It : (S : Sig) (A : Alg S) → Mor S (Initial S) A

It S A = record { f = λ srt → funcs S A srt ;

eq = λ srt c p {xs} → eqProof S A srt c p xs }

For the first field of our construction, we need to define a function funcs of
the following type.

funcs : (S : Sig) (A : Alg S) (srt : Fin (sorts S)) →
J S K srt → carriers A srt

Given a sort number srt, this function takes an element of the type stand-
ing for srt in the initial algebra, JSK srt, and returns an element of the
corresponding type (carriers A) srt. Let us illustrate this by an exam-
ple. Consider the initial algebra for N which we call InitialNAlg, and the
Boolean N-algebra BoolNAlg’.

InitialNAlg : Initial NSig

J NSig K zero : Set

zero : J NSig K zero

suc : J NSig K zero → J NSig K zero

BoolNAlg' : Alg NSig

Bool : Set

true : Bool

not : Bool → Bool

In this scenario, funcs should map zero to true and suc n for n : JNSigK zero
to suc b for b : Bool. This involves first converting arguments of type JNSigK zero
to arguments of type Bool, and then applying these arguments to the corre-
sponding constructor in BoolNAlg’. More generally, for an N-algebra X, we
need the following function.

fN' : (X : Alg NSig) → carriers (Initial NSig) zero →
carriers X zero

fN' X (con .0F .(cn []) hd (arg ar)) = (cons X) zero (cn []) hd

fN' X (con .0F .(cn (rec [] 0F :: [])) (tl hd) (arg (n , tt))) =

(cons X) zero (cn (rec [] zero :: [])) (tl hd) (fN' X n)

43

Chapter 5 5.4. The Iterator

Note how we pattern match on the element of the initial algebra, and call the
constructors of the algebra X, applying any relevant arguments after having
mapped these arguments using fN’ recursively.

The above example is fairly straightforward. For mutual inductive types
with more than one sort, we would have a function like fN’ for each sort,
with their definitions calling each other recursively.

We now define funcs as follows.

funcs srt (con .srt c p (arg ar)) =

apply S A srt c (cons A srt c p) (argsInitToCarr srt c ar)

funcs applies mapped arguments to the relevant constructors in the algebra
A. The function argsInitToCarr takes care of the mapping of arguments.

argTypeInitToCarr : (a : Arg (sorts S)) → argType (J_K_ S) a →
argType (carriers A) a

argTypeInitToCarr (nrec set) arType = arType

argTypeInitToCarr (rec lst fin) arType = mapCon fin lst arType

argsInitToCarr : (c : Con (sorts S)) → args srt (J_K_ S) c →
args srt (carriers A) c

argsInitToCarr (cn []) ars = ars

argsInitToCarr (cn (x :: xs)) (arType , ars) =

argTypeInitToCarr x arType , argsInitToCarr (cn xs) ars

argsInitToCarr goes through a constructor one argument at a time, calling
argTypeInitToCarr at each step. We note that these functions are almost
identical to the functions map and mapArgType respectively, which we defined
in Section 5.2. Before explaining why we could not use these previously
defined functions, we show our definition of our last function mapCon.

mapCon : (fin : Fin (sorts S)) (lst : List U) →
conTypeAux (J_K_ S) lst fin →
conTypeAux (carriers A) lst fin

mapCon fin [] cta = funcs fin cta

mapCon fin (x :: xs) cta = λ s → mapCon fin xs (cta s)

mapCon is itself almost identical to the function mapConTypeAux, also defined
in Section 5.2. The reason we could not use the previously defined functions

44

Chapter 5 5.4. The Iterator

and had to write new ones is that they require a function of type

(srt : Fin (sorts S)) → (carriers A) srt → (carriers A) srt,

but this would be precisely the function funcs that we are trying to define.
Had we used these functions in our definition of funcs, this would have been
defined as

funcs srt (con .srt c p (arg ar)) =

apply S A srt c (cons A srt c p) (map S (Initial S) A srt

c funcs ar)

and since we would be using funcs as an argument to map in its own definition,
we would get a non-termination error as Agda cannot make sure that we are
calling funcs on a smaller argument. However, we obtain the same effect
by defining the three functions shown above, with mapCon’s base case calling
funcs (on a possibly different sort number than the one in the original funcs
call, depending on whether srt is equal to fin). Because we call mapCon from
funcs, and funcs from mapCon, these two functions are mutually defined.

We now focus on the second field of It, the equality proof. The equality
that we need to prove is shown below.

eqProof : (S : Sig) (A : Alg S) (srt : Fin (sorts S))

(c : Con (sorts S)) (p : c ∈ cns S srt)

(xs : args srt (J_K_ S) c) →
funcs S A srt (apply S (Initial S) srt c

(makeCons S srt c p) xs) ≡
apply S A srt c (cons A srt c p) (map S

(Initial S) A srt c (funcs S A) xs)

The proof statement as is is complex and not straightforward to prove, so we
will break it down into multiple sub-proofs. We will prove this in a sequence
of steps from top to bottom, with the left hand side of the equality as the
top of the proof and the right hand side as the bottom of the proof, so that
we can simplify the bottom and make our way up, and simplify the top and
make our way down, so long as we can make both ends meet in the middle.
This can be written in Agda by importing the ≡-Reasoning module. So far,
we have the following.

45

Chapter 5 5.4. The Iterator

begin

funcs S A srt (apply S (Initial S) srt c (makeCons S srt c p) ars)

?

apply S A srt c (cons A srt c p) (map S (Initial S) A srt c

(funcs S A) ars)

�

We need to figure out a sequence of steps to prove the equality of these two
statements. If we look at the bottom of the proof closely, we notice that
this is precisely what we said funcs would have been written as had we used
our previously defined functions map, mapArgType, and mapConTypeAux. This
intuition drives us to attempt to provide a proof that the bottom part of our
proof is equal to our actual definition of funcs. This proof would go in the
second ≡〈 ? 〉 symbol below.

begin

funcs S A srt (apply S (Initial S) srt c (makeCons S srt c p) ars)

≡〈 ? 〉
apply S A srt c (cons A srt c p) (argsInitToCarr S A srt c ars)

≡〈 ? 〉
apply S A srt c (cons A srt c p) (map S (Initial S) A srt c

(funcs S A) ars)

�

Indeed, it is easy to prove that argsInitToCarr behaves like map and that
argTypeInitToCarr behaves like mapArgType, although these rely on our proof
that mapCon behaves like mapConTypeAux.

pfMapArgType : (srt : Fin (sorts S)) (x : Arg (sorts S))

(at : argType (J_K_ S) x) →
argTypeInitToCarr srt x at ≡
mapArgType S (Initial S) A srt x funcs at

pfMapArgType srt (nrec x) at = refl

pfMapArgType srt (rec lst fin) at = pfMapConTypeAux srt fin lst at

eqTuple : {A B : Set} {a a' : A} {b b' : B} → a ≡ a' → b ≡ b'

→ (a , b) ≡ (a' , b')

eqTuple {_} {_} {a} {.a} {b} {.b} refl refl = refl

46

Chapter 5 5.4. The Iterator

pfMap : (srt : Fin (sorts S)) (c : Con (sorts S))

(ar : args srt (J_K_ S) c) →
argsInitToCarr srt c ar ≡ map S (Initial S) A srt c funcs ar

pfMap srt (cn []) ar = refl

pfMap srt (cn (x :: xs)) (fst , snd) =

eqTuple (pfMapArgType srt x fst) (pfMap srt (cn xs) snd)

The proof that mapCon behaves like mapConTypeAux is less straightforward
since, because of the way the two functions are defined, in the inductive case
we have to prove something of the form λ a → f a ≡ λ a → g a knowing
that f a ≡ g a for all a. This principle is known as functional extensionality
and is not provable in intensional type theory, and hence in Agda using the
standard libraries. Within this setting, refl is the only constructor of the
equality type, which equates definitionally equal objects, but λ a → f a

and λ a → g a are not definitionally equal. To get around this, we could
use Agda’s Cubical mode which views (proof-relevant) equalities as paths on
the unit interval, and using which functional extensionality is easily proved.
After trying to use the Cubical libraries, the problem with this approach
is that it adds restrictions to Agda’s termination checker due to enabling
the without-K option, which tells Agda not to assume the K axiom, which
roughly states that any equality proof is equivalent to refl. This results in
our previous definition of funcs not passing the termination checker, which
is still under development for the Cubical mode and might still lack some
features. Therefore, we opt for the other option, which is to assume this
principle by declaring it as a postulate, and the rest of the proof follows
easily.

postulate funExt : ∀ {`} {A : Set `} {B : A → Set `}

{f g : (x : A) → B x} →
((x : A) → f x ≡ g x) → f ≡ g

pfMapConTypeAux : (srt fin : Fin (sorts S)) (l : List U)

(cta : conTypeAux (J_K_ S) l fin) →
(mapCon fin l cta) ≡
(mapConTypeAux S (Initial S) A srt fin l funcs cta)

pfMapConTypeAux srt fin [] cta = refl

47

Chapter 5 5.4. The Iterator

pfMapConTypeAux srt fin (x :: xs) cta =

funExt (λ s → pfMapConTypeAux srt fin xs (cta s))

We can now fill in the missing sub-proof in the main proof by applying cong

to pfMap. congruence states that if two expressions are equal, they remain
equal after applying the same function to them (Wadler et al., 2020).

begin

funcs S A srt (apply S (Initial S) srt c (makeCons S srt c p) ars)

≡〈 ? 〉
apply S A srt c (cons A srt c p) (argsInitToCarr S A srt c ars)

≡〈 cong (apply S A srt c (cons A srt c p)) (pfMap S A srt c ars) 〉
apply S A srt c (cons A srt c p) (map S (Initial S) A srt c (funcs S A) ars)

�

The bottom can now be reduced in one step to the left hand side of the
definition of funcs.

begin

funcs S A srt (apply S (Initial S) srt c (makeCons S srt c p) ars)

≡〈 ? 〉
funcs S A srt (con srt c p (arg ars))

≡〈 refl 〉
apply S A srt c (cons A srt c p) (argsInitToCarr S A srt c ars)

≡〈 cong (apply S A srt c (cons A srt c p)) (pfMap S A srt c ars) 〉
apply S A srt c (cons A srt c p) (map S (Initial S) A srt c (funcs S A) ars)

�

All that remains now to complete our proof is to show that (apply S (Initial

S) srt c (makeCons S srt c p) ars) results in (con srt c p (arg ars)).
Intuitively, this makes sense since apply uses the constructors of our initial
algebra, defined using makeConsAux by going through the constructor c and
accumulating its arguments, constructing an element of type JSK srt using
con, and placing the accumulated arguments in arg ars, the result of which
is con srt c p (arg ars). We prove this equality using apply≡con shown
below.

apply≡con : (c : Con (sorts S)) (p : c ∈ cns S srt)

(ars : args srt (J_K_ S) c) →

48

Chapter 5 5.4. The Iterator

apply S (Initial S) srt c (makeCons S srt c p) ars ≡
con srt c p (arg ars)

apply≡con (cn []) p tt = refl

apply≡con (cn (x :: xs)) p (fst , snd) =

apply≡conMca x xs p fst snd

apply≡con calls an auxiliary function apply≡conMca, which in turn calls an-
other auxiliary function, and so on. We will not list all of this code here as the
process is quite mechanical and verbose, although the full proof is available in
the supplementary material. It suffices to say that we use these intermediate
functions to analyse each step of our construction of con srt c p (arg ars)

and prove properties about the functions constructing it. The least obvi-
ous part is perhaps the definition of the function appArgs, which acts as a
repeated version of the function argsSnoc, and is used to prove properties
about it.

appArgs : (l l : List (Arg (sorts S))) →
args srt (J_K_ S) (cn l) →
args srt (J_K_ S) (cn l) →
args srt (J_K_ S) (cn (l ++ l))

appArgs [] l a a = a

appArgs (x :: xs) [] a a = a

appArgs (x :: xs) (y :: ys) a a =

proj a , appArgs xs (y :: ys) (proj a) a

Once all the intermediate proofs are completed, we can finally complete our
main proof by once again applying congruence, this time to apply≡con.

begin

funcs S A srt (apply S (Initial S) srt c (makeCons S srt c p) ars)

≡〈 cong (funcs S A srt) (apply≡con S srt c p ars) 〉
funcs S A srt (con srt c p (arg ars))

≡〈 refl 〉
apply S A srt c (cons A srt c p) (argsInitToCarr S A srt c ars)

≡〈 cong (apply S A srt c (cons A srt c p)) (pfMap S A srt c ars) 〉
apply S A srt c (cons A srt c p) (map S (Initial S) A srt c (funcs S A) ars)

�

49

Chapter 5 5.5. Uniqueness of the Iterator

5.5 Uniqueness of the Iterator

In the previous section we constructed a weakly initial algebra for a given
signature. In this section, we prove that this algebra is unique, making it an
initial algebra.

The statement that we want to prove is shown below. Any morphism from
the initial S-algebra to another S-algebra is actually equivalent to the iterator.

uIt : (S : Sig) (A : Alg S) (f : Mor S (Initial S) A) → f ≡ It S A

Since f and It S A are both morphisms, which are defined as record types,
we need to equate two records by equating each one of their fields. Doing
this is, however, not as straightforward as simply proving

mor≡intro' : (S : Sig) (A : Alg S) (m m : Mor S (Initial S) A) →
f m ≡ f m → eq m ≡ eq m → m ≡ m.

Indeed, this type does not type check. The field eq in Mor depends on the
other field f, so eq m depends on f m while eq m depends on f m, meaning
that eq m and eq m have different types and cannot be related by ≡.
Obviously, we know that to get to that part of the type, we would have
proved that f m ≡ f m, so eq m and eq m do have the same type, but we
have not expressed this to Agda yet and hence it gives us an error.

To express equality of dependent record types, we first look at equality for
Σ-types, of which record types are a generalisation. The equality of Σ-types
is a Σ-type of equalities. To prove that (a , b) ≡ (a’ , b’), we provide a
proof that a ≡ a’, and given this, we prove that the value/proof obtained
by substituting a with a’ in a predicate B, whose proof that it holds for a is
b, is equivalent to b’.

Σ≡intro : ∀ {α β}{A : Set α}{B : A → Set β}{a a' : A}{b : B a}{b' : B a'}

→ (Σ (a ≡ a') λ p → subst B p b ≡ b')

→ (a , b) ≡ (a' , b')

Σ≡intro (refl , refl) = refl

To prove that two morphisms mor fun e and mor fun’ e’ are equal, we write
an ≡-introduction rule similar to the above, where a = fun, a’ = fun’, b =

e and b’ = e’ (here we are omitting the implicit arguments in the type).

50

Chapter 5 5.5. Uniqueness of the Iterator

mor≡intro : (p : fun ≡ fun') → (subst (λ fun → (srt : Fin (sorts S))

(c : Con (sorts S)) (p : c ∈ (cns S) srt)

(xs : args srt (carriers A) c) →
(fun srt) (apply S A srt c ((cons A) srt c p) xs) ≡
apply S A srt c ((cons A) srt c p)

(map S A A srt c fun xs)) p e) ≡ e' →
mor fun e ≡ mor fun' e'

mor≡intro refl refl = refl

We employ mor≡intro to prove uIt, so the first thing we have to do is prove
that for a given morphism m, f m ≡ f (It S A).

uItF : (S : Sig) (A : Alg S) (srt : Fin (sorts S)) (i : J S K srt)

(m : Mor S (Initial S) A) → f m srt i ≡ f (It S A) srt i

Proving uItF is similar to proving eqProof from Section 5.4, so we will
not be listing all the code here. Most importantly, we used the function
apply≡con defined in that section, as well as functions almost identical to
pfMap, pfMapArgType, and pfMapConTypeAux, this time written in terms of f

m for a morphism m instead of funcs. Our counterpart to pfMapConTypeAux,
pfMapConTypeAux’, uses uItF in its base case, hence these two functions are
defined mutually, as well as funExt in its inductive case. Even though we are
defining very similar functions more than once, the reason we cannot gener-
alise these functions by defining them so they have an argument of type (f :

(srt : Fin (sorts S)) → J S K srt → carriers A srt) and swapping out
the f as required, is that doing so would result in a non-termination error,
as described already in Section 5.4.

uItF S A srt (con .srt c p (arg ar)) (mor fm eqm) =

subproof S A srt c p ar (mor fm eqm)

(trans (sym (cong (fm srt) (apply≡con S srt c p ar))) (eqm srt c p ar))

Now that we have proved that the first fields f of the two records are equiv-
alent, we need to prove the equivalence of the second fields eq. Since we
are using the definition of equality that can only be constructed in one way,
two equality proofs having the same type are automatically equivalent—they
must both be refl. To make this explicit and prove our goal uIt, we can
take several approaches. One option is to alter our Alg definition to add the
constraint that any carrier has to be what is called an h-set in homotopy

51

Chapter 5 5.5. Uniqueness of the Iterator

type theory, or in other words, it has to have the property that any two of
its elements can be equivalent in at most one way. To achieve this, we can
either express this explicitly as a type, or we can assign carriers the type
Prop, which is like Set except all the elements of a type having type Prop are
definitionally equal. We decided against using one of these options as this
would affect many of the definitions that depend on Alg, although we might
opt for one of them in our future work when we have more time to make
these changes. What we did here instead was use the principle of uniqueness
of identity proofs (UIP) directly in the proof of uIt.

UIP : ∀ {a} {A : Set a} {x y : A} (p q : x ≡ y) → p ≡ q

UIP refl refl = refl

uIt : (S : Sig) (A : Alg S) (f : Mor S (Initial S) A) → f ≡ It S A

uIt S A (mor fm eqm) with

(funExt S A (λ s → funExt S A (λ i → uItF S A s i (mor fm eqm))))

uIt S A (mor .(funcs S A) eqm) | refl =

mor≡intro refl (funExt (λ srt → funExt (λ c → funExt (λ p →
funExt (λ xs → UIP (eqm srt c p xs) (eqProof S A srt c p xs))))))

funExt was used in the proof of equivalence of both f and eq to, for the first
case, turn a type (srt : Fin (sorts S)) (i : JSK srt) (m : Mor S (Initial

S) A) → f m srt i ≡ funcs S A srt i into an equality of type f m ≡ funcs

S A, and similarly for eq.

Having proved that the iterator is unique means that we have concluded
our constructive proof of the statement ‘every inductive type has an initial
algebra’. Throughout this chapter, we have also provided a full specification
of simple and mutual inductive types.

52

6
Constructing WI-types

Our next objective was to reduce all simple and mutual inductive types to
a singular inductive type. This chapter details our construction of indexed
W-types, or WI-types, and a starting point for reducing inductive types to
WI-types. This chapter focusses on the indexed variant of W-types instead
of simple W-types because in the future, we aim to extend our work to
include more general inductive types, like inductive families, which cannot be
represented by W-types directly, but can be represented by WI-types (which
can then be reduced to W-types). Our work here is thus better suited to
future extensions than if we had just considered W-types, and in any case
any W-type representation of an inductive type can be easily converted to a
WI-type representation.

6.1 WI-Types Introduction and Examples

WI-types are the indexed version of W-types, to which they have been shown
to be reducible (Altenkirch and Morris, 2009; Altenkirch et al., 2015), so
showing that simple and mutual inductive types are reducible to WI-types
automatically implies they are reducible to W-types. In order to construct
a reduction from inductive types to WI-types, i.e. to show that the WI-type
is able to represent any inductive type, we first assume the existence of the
WI-type, written in Agda as follows.

data WI (I:Set) (S:I → Set) (P:(i:I) → S i → I → Set) : I → Set where

sup : (i:I) (s:S i) → ((j:I) → P i s j → WI I S P j) → WI I S P i

We also assume the existence of the WI-type’s eliminator, which allows us
to define functions out of the WI-type. (In reality, the WI-type and its elim-
inator can be derived from the W-type and its eliminator, so we should have

53

Chapter 6 6.1. WI-Types Introduction and Examples

assumed the latter instead, but this would have complicated our construc-
tions so we leave it for future work.) Next, we take a particular inductive
type’s signature S and construct the types I, S, and P above to obtain the
WI-type representation of the inductive type. We then also derive the con-
structors for this type, at which point we will have obtained the WI-type
algebra associated to S. Finally, we construct a morphism from this algebra
to any other S-algebra and show that this morphism is unique, proving that
the WI-type algebra is isomorphic to the initial algebra of S and hence to
the original inductive type. Although we have not achieved all of the steps
in this process, we go through the ones that we have achieved, and present
some ideas on how to implement the steps that follow. This first section
introduces WI-types and presents WI-type representations of types we have
already seen.

To model any inductive type using the WI-type, we need to define I, S, and
P for the type. I : Set is a type representing all the sorts of the inductive
type. S : I → Set refers to a constructor of a given sort by specifying the
types of the constructor’s non-recursive arguments. Having specified a sort
i and a constructor S i, P : (i : I) → S i → I → Set expresses the
number of recursive arguments to be passed to the constructor S i that are
of the type corresponding to sort j : I.

We provide some of our inductive type examples expressed as WI-types. We
begin with the representation for N. Firstly, N only has one sort, therefore
I = > (to represent two sorts we use the type >] >, for three sorts >
] >] >, and so on). Neither of this sort’s constructors has non-recursive
arguments, and since there are two of them, S tt = >] >. Lastly, the
first constructor zero has no recursive arguments, hence P tt (inj tt) tt

= ⊥, but the second constructor suc has one, hence P tt (inj tt) tt =

>. Using the sets we just defined, N’s constructors would then be written
as zero” and suc” below.

I = >

S : I → Set

S tt = >] >

P : (i : I) → S i → I → Set

54

Chapter 6 6.1. WI-Types Introduction and Examples

P tt (inj tt) tt = ⊥
P tt (inj tt) tt = >

zero'' : WI I S P tt

zero'' = sup tt (inj tt) λ {tt → λ ()}

suc'' : WI I S P tt → WI I S P tt

suc'' n = sup tt (inj tt) (λ {tt → λ {tt → n}})

Upon choosing the first constructor in zero” with inj tt, when having to
input the recursive arguments for the constructor, we end up at the empty
map λ (). This represents that recursion has ended, or that we have reached
an element with no subtree/s if we look at the WI-type as a well-ordered tree.
The situation for suc” is different, as there we pass the recursive argument
n.

Lam expressed as a WI-type is similar to N with just one sort. Note however
that this time, the first two constructors have non-recursive arguments and
this is reflected in S. Also note how the non-recursive arguments are passed
in the definition of the constructors var” and abs”. (We could have used >
] > instead of Bool in P, they are in fact isomorphic as they are both types
with two elements.)

I = >

S : I → Set

S tt = String] String] >

P : (i : I) → S i → I → Set

P tt (inj s) tt = ⊥
P tt (inj (inj s)) tt = >
P tt (inj (inj tt)) tt = Bool

var'' : String → WI I S P tt

var'' s = sup tt (inj s) λ {tt → λ ()}

abs'' : String → WI I S P tt → WI I S P tt

abs'' s l = sup tt (inj (inj s)) λ {tt → λ {tt → l}}

55

Chapter 6 6.1. WI-Types Introduction and Examples

app'' : WI I S P tt → WI I S P tt → WI I S P tt

app'' m n = sup tt (inj (inj tt)) λ {tt → λ {true → m ; false → n}}

Our last example is NF-NE expressed as a WI-type. This type now has two
sorts, hence I = Bool. Our convention is that the false value represents
NF while true represents NE. The rest of the definitions follow similarly to
before, except this time we always have to consider two cases for elements
of type I.

I = Bool

S : I → Set

S false = >] String -- NF

S true = String] > -- NE

P : (i : I) → S i → I → Set

P false (inj tt) false = ⊥ -- ne has 0 NF recursive args

P false (inj tt) true = > -- ne has 1 NE recursive arg

P false (inj s) false = > -- lam has 1 NF recursive arg

P false (inj s) true = ⊥ -- lam has 0 NE recursive args

P true (inj s) false = ⊥ -- var has 0 NF recursive args

P true (inj s) true = ⊥ -- var has 0 NE recursive args

P true (inj tt) false = > -- app has 1 NF recursive arg

P true (inj tt) true = > -- app has 1 NE recursive arg

ne' : WI I S P true → WI I S P false

ne' e = sup false (inj tt) λ {true → λ {tt → e} ; false → λ ()}

lam' : String → WI I S P false → WI I S P false

lam' s f = sup false (inj s) λ {true → λ () ; false → λ {tt → f}}

var'NE : String → WI I S P true

var'NE s = sup true (inj s) (λ {true → λ () ; false → λ ()})

app'NE : WI I S P true → WI I S P false → WI I S P true

app'NE e f = sup true (inj tt) λ {true → λ {tt → e} ; false → λ {tt → f}}

56

Chapter 6 6.2. The Carriers

6.2 The Carriers

Given an inductive type’s signature, our current aim is to construct an alge-
bra for that signature using its representation as a WI-type. Recall that an
algebra Alg has two fields: carriers and constructors. We set the carriers of
the algebra to be WI I S P, where I, S, and P have to be defined in general
for every signature. This section details our definition of these three types,
forming the carriers of our algebra.

The first type I : Set is straightforward to define. Since I represents the
number of sorts of an inductive type, we simply define I as Fin (sorts S)

for a signature S, the type with sorts S elements. We can then assign each
sort of the inductive type to an element of this type.

The second type S : I → Set is passed a sort number, looks at that sort’s
constructors, and forms a sum type of these constructors, representing the
different paths we could take to construct an element of the sort. The sum
type also encodes the types of non-recursive arguments to be passed to the
constructors. To look at a signature S’s constructors for a given sort i, we
use cns S i.

makeS : (S : Sig) → Fin (sorts S) → Set

makeS S i = listConToSetNrec S (cns S i)

We pass cns S i to the function listConToSetNrec, which returns the sum
type we just described. The case for the empty list, which is reached either
immediately when dealing with the empty type (because it has no construc-
tors), or else at the end of the list of constructors for a particular sort, returns
the empty type ⊥ to signal there are no other ways to construct the type.

listConToSetNrec : (S : Sig) → List (Con (sorts S)) → Set

listConToSetNrec S [] = ⊥
listConToSetNrec S (x :: xs) = conToSetNrec S x] listConToSetNrec S xs

listConToSetNrec in turn calls the functions conToSetNrec and argToSetNrec,
which handle individual constructors and arguments respectively. The base
case for conToSetNrec returns >. This case is reached either when a construc-
tor has no arguments, in which case > signifies an option to construct the

57

Chapter 6 6.2. The Carriers

sort without having to provide any non-recursive arguments, or at the end of
a constructor’s list of arguments. In this case, we attach a > at the end of the
type, for which we can easily provide the element tt. We could have avoided
adding > at the end by further pattern matching on xs, but this would have
decreased modularity and made our later functions and proofs that rely on
these definitions more complex. argToSetNrec returns the argument’s type
for non-recursive arguments, and a > for recursive ones.

argToSetNrec : (S : Sig) → Arg (sorts S) → Set

argToSetNrec S (nrec t) = El t

argToSetNrec S (rec lst fin) = >

conToSetNrec : (S : Sig) → Con (sorts S) → Set

conToSetNrec S (cn []) = >
conToSetNrec S (cn (x :: xs)) = argToSetNrec S x × conToSetNrec S (cn xs)

We can now compare the S types we defined for our examples earlier with
the S types generated by makeS. For N, S was defined as >] >, while makeS

NSig zero evaluates to >] > × >] ⊥. The extra >s in the latter is due
to the base case of conToSetNrec which we explained above. For Lam, S was
defined in the examples as String] String] >, and makeS LamSig zero

gives String × >] String × > × >] > × > × >] ⊥. NF-NE’s S

for NF was defined as >] String, and makeS NFNESig zero gives > × >]
String × > × >] ⊥, while for NE it was defined as String] > and makeS

NFNESig (suc zero) gives String × >] > × > × >] ⊥. Once again, the
functions could have easily been defined to be closer to the previous S values,
i.e. having no extra >s and just an extra] ⊥ at the end, but we chose this
representation to facilitate our later definitions and to increase modularity.

The third and last type we need to define is P : (i : I) → S i → I →
Set. P takes the sort i we are constructing, a constructor of that sort, and
a sort j, and returns a type for the recursive arguments of type j that are
needed for this constructor. To construct this type, we once again have to
access the list of constructors of sort i in the signature S using cns S i.

makeP : (S : Sig) (i : Fin (sorts S)) → makeS S i → Fin (sorts S) → Set

makeP S i s j = listConToSetRec S (cns S i) s j

makeP calls the function listConToSetRec. Since we are not passing a con-

58

Chapter 6 6.2. The Carriers

structor of type Con (sorts S) for signature S, but we need the constructor
of this type to be able to return its recursive argument types, this function
has to figure out which constructor we are referring to using only the S i

value. We can do this by noting that when our S i value is of the form inj

x, we are referring to the first constructor in the cns S i list, while if it is
of the form inj x, we recursively have to check the tail of the list and x.
This is due to how we defined the inductive case of listConToSetNrec. For
instance, consider the type Lam with the three constructors var : String →
Lam, abs : String → Lam → Lam, and app : Lam → Lam → Lam, represented
in that order in cns LamSig zero. Because we constructed S based on cns

LamSig zero so that makeS LamSig zero = String × >] String × > × >
] > × > × >] ⊥, having an S i value of type inj ("x" , tt) means
we are constructing var, having inj (inj ("x" , tt , tt)) means we are
constructing abs, and having inj (inj (inj (tt , tt , tt))) means we
are constructing app.

listConToSetRec : (S : Sig) (xs : List (Con (sorts S)))

(xsp : listConToSetNrec S xs) → Fin (sorts S) → Set

listConToSetRec S (x :: xs) (inj xp) j = conToSetRec S x j

listConToSetRec S (x :: xs) (inj xsp) j = listConToSetRec S xs xsp j

The function conToSetRec returns the sum type of recursive arguments of a
given constructor, having the type of a given sort. This is why in the auxil-
iary function argToSetRec, we have to check whether the recursive argument
we are considering is of type sort j or some other sort. For instance, the
constructor ne : NE → NF in NF-NE has a recursive argument of type NE but
no recursive arguments of type NF, so we need to ensure that this recursive
argument is not considered when enquiring about the recursive arguments
of type NF.

recArg : List U → Set

recArg [] = >
recArg (x :: xs) = El x × recArg xs

argToSetRec : (S : Sig) → Arg (sorts S) → Fin (sorts S) → Set

argToSetRec S (nrec x) j = ⊥
argToSetRec S (rec lst fin) j with fin =Fin j

argToSetRec S (rec lst fin) j | false = ⊥

59

Chapter 6 6.3. The Constructors

argToSetRec S (rec lst fin) j | true = recArg lst

conToSetRec : (S : Sig) → Con (sorts S) → Fin (sorts S) → Set

conToSetRec S (cn []) j = ⊥
conToSetRec S (cn (x :: xs)) j = argToSetRec S x j] conToSetRec S (cn xs) j

The definition of the predicate =Fin is shown below.

=Fin : {n : N} → Fin n → Fin n → Bool

zero =Fin zero = true

zero =Fin suc _ = false

suc _ =Fin zero = false

suc m =Fin suc n = m =Fin n

We can once again compare the P types we defined for our examples with
the P types generated by makeP. For LamSig, we have the examples below.

Examples Using makeP

P tt (inj s) tt = ⊥ makeP LamSig zero (inj ("x" , tt))

zero =⇒ ⊥] ⊥
P tt (inj (inj s)) tt = > makeP LamSig zero (inj (inj ("x" ,

tt , tt))) zero =⇒ ⊥] >] ⊥
P tt (inj (inj tt)) tt = Bool makeP LamSig zero (inj (inj (inj

(tt , tt , tt)))) zero =⇒
>] >] ⊥

To check that we are calculating the recursive arguments correctly when
having more than one sort, in our examples we have that P false (inj

tt) false = ⊥, expressing that ne has no NF recursive arguments, and P

false (inj tt) true = >, expressing that ne has one NE recursive argument.
Correspondingly, we have that makeP NFNESig zero (inj (tt , tt)) zero

gives us ⊥] ⊥ (NF recursive arguments), and that makeP NFNESig zero (inj

(tt , tt)) (suc zero) gives >] ⊥ (NE recursive arguments).

6.3 The Constructors

Having defined makeS and makeP, we can define the carriers of our algebra
using WI defined earlier. In this section, we define the function makeConsW that
builds the constructors of these carriers, so that we can define our algebra

60

Chapter 6 6.3. The Constructors

WAlg as follows.

WAlg : (S : Sig) → Alg S

WAlg S = record { carriers = WI (Fin (sorts S)) (makeS S) (makeP S) ;

cons = λ srt c p → makeConsW S srt c p }

makeConsW takes a constructor and passes it on to makeConsWAux, much in the
same way makeCons passes the constructor to makeConsAux in Section 5.3. In-
deed, makeConsWAux is similar to makeConsAux in taking two lists of arguments
l and l, where l is the part of the constructor it has already processed
and l is the part yet to be processed. However, because WI is constructed
differently to J_K_ S in that non-recursive and recursive arguments are stored
separately, we cannot simply use args srt (J_K_ S) (cn l) as the type for
our arguments. Instead, we know the non-recursive arguments have type
conToSetNrec S (cn l), and the recursive arguments are stored in the func-
tion (j : Fin (sorts S)) → conToSetRec S (cn l) j → WI (Fin (sorts

S)) (makeS S) (makeP S) j.

makeConsWAux : (S : Sig) (srt : Fin (sorts S)) (l l : List (Arg (sorts S)))

→ (p : (cn (l ++ l) ∈ cns S srt))

→ conToSetNrec S (cn l)

→ ((j : Fin (sorts S)) → conToSetRec S (cn l) j →
WI (Fin (sorts S)) (makeS S) (makeP S) j) →
conType srt (WI (Fin (sorts S)) (makeS S) (makeP S))

(cn l)

makeConsWAux S srt l [] p nrec_ars rec_ars =

sup srt (makeSi S srt l (cns S srt) p nrec_ars)

(makeWI S srt l p nrec_ars rec_ars)

makeConsWAux S srt l (x :: xs) p nrec_ars rec_ars =

λ ar → makeConsWAux S srt (l ::r x) xs p

(conToSetNrecSnoc S srt l x nrec_ars ar)

(conToSetRecSnoc S srt l x rec_ars ar)

makeConsW : (S : Sig) (srt : Fin (sorts S)) (c : Con (sorts S)) → c ∈ cns S srt

→ conType srt (WI (Fin (sorts S)) (makeS S) (makeP S)) c

makeConsW S srt (cn x) p = makeConsWAux S srt [] x p tt (λ j → λ ())

Once makeConsWAux has parsed the entire constructor and l = [], makeSi

61

Chapter 6 6.3. The Constructors

is used to produce the non-recursive arguments, while makeWI is used for
the recursive ones. makeSi is fairly straightforward and uses the inj/inj
reasoning we discussed when constructing listConToSetRec.

module _(S : Sig) (srt : Fin (sorts S)) (l : List (Arg (sorts S))) where

makeSi : (xs : List (Con (sorts S))) → cn l ∈ xs →
conToSetNrec S (cn l) → listConToSetNrec S xs

makeSi (.(cn l) :: xs) hd nrec_ars = inj nrec_ars

makeSi (x :: xs) (tl p) nrec_ars = inj (makeSi xs p nrec_ars)

makeWI transforms the function we have of type

(j : Fin (sorts S)) → conToSetRec S (cn l) j → WI (Fin (sorts S))

(makeS S) (makeP S) j

into one which fits the type we need, which is

(j : Fin (sorts S)) → makeP S srt (makeSi (cns S srt) p nrec_ars) j

→ WI (Fin (sorts S)) (makeS S) (makeP S) j.

It builds the required function from the given one by pattern matching on
the location of the fully processed constructor cn l in cns S srt, because
it depends on the makeSi value which also pattern matches on this location.
Its definition is omitted here as it is fairly mechanical, but can be found in
the supplementary material.

The function conToSetNrecSnoc updates the non-recursive arguments at each
step of makeConsWAux. It produces an element of type conToSetNrec S (cn

(l ::r x)). It checks if the snocced argument x is recursive or not. If it is
non-recursive, it adds the incoming argument ar at the end of the tuple of
non-recursive arguments. If it is recursive, it adds a tt at the end of the
tuple instead.

conToSetRecSnoc rewrites the function of type

(j : Fin (sorts S)) → conToSetRec S (cn l) j → WI (Fin (sorts S))

(makeS S) (makeP S) j)

62

Chapter 6 6.3. The Constructors

into a function of type

(j : Fin (sorts S)) → conToSetRec S (cn (l ::r x)) j → WI (Fin (sorts S))

(makeS S) (makeP S) j,

to accomodate for the snocced argument x. It does so by first checking
whether x is recursive or not. If it is non-recursive, the process is straightfor-
ward as we have no recursive arguments to add. If it is recursive of the form
rec lst fin, the process is more complex as we have to leave the entries in
the above function for j 6= fin unchanged, and associate the new recursive
argument ar to the relevant sort j.

The code for conToSetNrecSnoc and conToSetRecSnoc can be found in the
supplementary material. To illustrate how the functions we mentioned in
this section work together, we show the steps in generating a constructor for
lam : Str → NF → NF of the inductive type NF-NE.

makeConsW NFNESig zero (cn (nrec string :: rec [] zero ::

[])) (tl hd)

=⇒ makeConsWAux NFNESig zero [] (nrec string :: rec [] zero ::

[]) (tl hd) tt (λ j → λ ())

=⇒ λ s → makeConsWAux NFNESig zero (nrec string :: [])

(rec [] zero :: []) (tl hd) (s , tt)

(λ j → λ {(inj ()); (inj ())})

=⇒ λ s → λ f → makeConsWAux NFNESig zero (nrec string ::

rec [] zero :: []) [] (tl hd) (s , tt , tt)

(λ {zero → {λ {(inj (inj tt)) → f} ;

(suc zero) → λ {(inj ()) ; (inj (inj ())) ;

(inj (inj ()))}})

=⇒ sup zero (inj (inj (s , tt , tt)))

(λ {zero → {λ {(inj (inj tt)) → f} ;

(suc zero) → λ {(inj ()) ; (inj (inj ())) ;

(inj (inj ()))}})

63

Chapter 6 6.4. The Iterator

6.4 The Iterator

Now that we have WAlg S for a given signature S, the next step in our
reduction is to construct the iterator, a morphism from WAlg S to any other
S-algebra.

WIt : (S : Sig) (A : Alg S) → Mor S (WAlg S) A

WIt S A = record { f = λ srt → funcsW S A srt ;

eq = λ srt c p xs → {!!} }

This construction has unfortunately not been completed, but throughout
this section we describe our work so far and some ideas for going forward.

The first thing we need to construct is a function funcsW from the carriers of
WAlg S to the carriers of an S-algebra A.

funcsW : (S : Sig) (A : Alg S) (srt : Fin (sorts S)) →
WI (Fin (sorts S)) (makeS S) (makeP S) srt → carriers A srt

Similarly to funcs from Section 5.4, what funcsW must do is to first convert
arguments of WI (Fin (sorts S)) (makeS S) (makeP S) srt into arguments
of carriers A srt by recursively calling funcsW on these arguments, and
then apply the arguments to the corresponding constructors in A. The ex-
ample below illustrates what we want to achieve, i.e. a generalisation of the
functions fNF” and fNE”.

fNF'' : (A : Alg NFNESig) → WI (Fin (sorts NFNESig)) (makeS NFNESig)

(makeP NFNESig) zero → carriers A zero

fNE'' : (A : Alg NFNESig) → WI (Fin (sorts NFNESig)) (makeS NFNESig)

(makeP NFNESig) (suc zero) → carriers A (suc zero)

-- ne

fNF'' A (sup .(zero) (inj (tt , tt)) f) =

(cons A) zero (cn (rec [] (suc zero) :: [])) hd

(fNE'' A (f (suc zero) (inj tt)))

-- lam

fNF'' A (sup .(zero) (inj (inj (s , tt , tt))) f) =

(cons A) zero (cn (nrec string :: rec [] zero :: [])) (tl hd) s

(fNF'' A (f zero (inj (inj tt))))

64

Chapter 6 6.4. The Iterator

-- var

fNE'' A (sup .(suc zero) (inj (s , tt)) f) =

(cons A) (suc zero) (cn (nrec string :: [])) hd s

-- app

fNE'' A (sup .(suc zero) (inj (inj (tt , tt , tt))) f) =

(cons A) (suc zero) (cn (rec [] (suc zero) :: rec [] zero :: [])) (tl hd)

(fNE'' A (f (suc zero) (inj tt))) (fNF'' A (f (zero) (inj (inj tt))))

We note that when calling fNF” or fNE” recursively, it is not immediately
obvious how we can provide the element of type WI. So for example, in the
first case of fNF”, we obtain the WI element using f (suc zero) (inj tt).
We call f with the argument suc zero because we need an argument of type
WI (suc zero) (representing NE), and the other argument inj tt is obtained
by looking at the result of makeP NFNESig zero (inj (tt , tt)) (suc

zero), the type for recursive arguments of type WI (suc zero) in the first
constructor of WI (zero), which evaluates to >] ⊥.

funcsW is defined similarly to funcs, using the previously defined apply, but
calls some new auxiliary functions.

funcsW S A srt (sup .srt s p) =

apply S A srt c (cons A srt c pf) (makeArgs S A srt (cns S srt) s p)

where

c,pf = findCon S (cns S srt) s

c = proj c,pf

pf = proj c,pf

To call apply, we need to find out which constructor sup srt s p corresponds
to, together with its location in cns S srt for signature S. We do this using
the function findCon, which pattern matches on s and returns a tuple with
the constructor and its location in the list of constructors cns S srt.

findCon : (S : Sig) (l : List (Con (sorts S))) → listConToSetNrec S l →
Σ (Con (sorts S)) (λ c → c ∈ l)

findCon S (x :: xs) (inj _) = x , hd

findCon S (x :: xs) (inj y) = proj rest , tl (proj rest)

where

rest = findCon S xs y

65

Chapter 6 6.4. The Iterator

funcsW then calls makeArgs, which goes through cns S srt until it arrives
at the constructor that s corresponds to, and then calls argsWToCarr on
this constructor. argsWToCarr’s job is to then extract the non-recursive and
recursive arguments from the s and p in sup srt s p, and transform them
into arguments for the S-algebra A.

argsWToCarr : (srt : Fin (sorts S)) (c : Con (sorts S)) (s : conToSetNrec S c)

→ ((j : Fin (sorts S)) → conToSetRec S c j → WI (Fin (sorts S))

(makeS S) (makeP S) j) → args srt (carriers A) c

argsWToCarr srt (cn []) s p = s

argsWToCarr srt (cn (x :: xs)) (fst , snd) p =

argTypeWToCarr x fst (λ j ar → p j (inj ar)) ,

argsWToCarr srt (cn xs) snd (λ j cr → p j (inj cr))

makeArgs : (srt : Fin (sorts S)) (l : List (Con (sorts S)))

(s : listConToSetNrec S l) → ((j : Fin (sorts S)) →
listConToSetRec S l s j → WI (Fin (sorts S)) (makeS S)

(makeP S) j) → args srt (carriers A) (proj (findCon S l s))

makeArgs srt (x :: xs) (inj y) p = argsWToCarr srt x y p

makeArgs srt (x :: xs) (inj y) p = makeArgs srt xs y p

argsWToCarr above is comparable to argsInitToCarr from Section 5.4. This
function calls argTypeWToCarr, which handles individual arguments and is
comparable to argTypeInitToCarr, and this in turn calls mapConW, which han-
dles lists of arguments for recursive function arguments and is comparable
to mapCon.

mapConW : (lst : List U) (fin : Fin (sorts S)) (s : >) →
(recArg lst → WI (Fin (sorts S)) (makeS S) (makeP S) fin)

→ conTypeAux (carriers A) lst fin

mapConW [] fin s p = funcsW fin (p s)

mapConW (x :: xs) fin s p = λ el_x → mapConW xs fin s (λ ra → p (el_x , ra))

argTypeWToCarr : (x : Arg (sorts S)) → argToSetNrec S x → ((j : Fin (sorts S))

→ argToSetRec S x j → WI (Fin (sorts S)) (makeS S)

(makeP S) j) → argType (carriers A) x

argTypeWToCarr (nrec x) s p = s

argTypeWToCarr (rec lst fin) s p = mapConW lst fin s (p fin)

66

Chapter 6 6.4. The Iterator

Similarly to mapCon, mapConW calls funcsW. This is the recursive call necessary
to map arguments of the WI-type to arguments of the carriers of A. However,
this time this leads to a non-termination error. The structure and sequence
of the functions in this section is the same as that in Section 5.4, the only
difference being the passing around of a function representing the argument
((j : I) → P i s j → WI I S P j) of the sup constructor of the WI-type.
Given a sort number, this function returns the recursive arguments having
the type of that sort. Because we are passing around a function, Agda cannot
ensure that the arguments are getting structurally smaller.

One way of circumventing this problem is to come up with a data type to
replace the function we are passing around. A simple example of this idea
is replacing a function of type {n : N} → Fin n → A, where A : Set, with
the data type Vec A n. Indeed, these both associate a number between 0 and
n − 1 to an element of type A. Our particular case requires a more refined
data type as it involves dependent types. One possible option is to use a
data type like the following, accompanied by a function for access of data.

data HVec : (n : N)(A : Fin n → Set) → Set where

[] : HVec N.zero (λ ())

:: : {n : N}{A : Fin (N.suc n) → Set} → A zero →
HVec n (λ i → A (suc i)) → HVec (N.suc n) A

appH : {n : N}{A : Fin n → Set} → HVec n A → (i : Fin n) → A i

appH {N.suc n} {A} (a :: as) zero = a

appH {N.suc n} {A} (a :: as) (suc i) = appH {n} {(λ i → A (suc i))} as i

At present, we still have some issues incorporating this representation into
our functions, so we leave this for future work. In our supplementary mate-
rial, we use the {-# TERMINATING #-} pragma so Agda switches off termination
checking for this code block. This is a ‘cheat’ that will be fixed in the fu-
ture, and should not be used under normal circumstances as this gives no
guarantees that our code is correct. However, when manually analysing the
structure of our functions, it is clear that the non-recursive arguments s be-
ing passed to p in mapConW have become smaller than their original value in
the initial call of funcsW, so our code should in fact terminate even though
Agda cannot guarantee this.

67

7
Conclusion and Future Work

This dissertation contributes towards the formalisation of simple and mu-
tual inductive types left incomplete by more general work. We specified a
small ‘theory of signatures’ in which we can express any simple or mutual
inductive type. Given a signature from this theory, we specified what al-
gebras and morphisms are for the signature, constructed its initial algebra,
and constructed a unique morphism from this algebra to any other algebra
of the signature. Moreover, we looked into WI-types, and constructed a
WI-type algebra for any given signature. We then described our attempt at
constructing the iterator for this algebra, which unfortunately has not been
completed, but goes a fair distance to construct a reduction from simple and
mutual inductive types to W-types.

Our work advances the long-term goal of creating a small as possible trusted
code base responsible for software verification. On the one hand, this means
that the end user has to assume as little as possible to provide behavioural
guarantees for their code, and on the other hand it prevents malicious users
from taking advantage of the complexities of a large code base. Moreover,
studying the metatheory of Martin-Löf Type Theory is essential for its valid-
ity as an alternative foundation of mathematics to set theory, and for proofs
shown in this setting to be deemed reliable.

Since all of our formalisations took place in Agda, a proof-assistant in which
code is type checked not run, the way to evaluate our results is to ensure that
our code compiles in Agda. This constitutes a proof of our results thanks to
the propositions as types paradigm. All of our code type checks except for
the non-termination error in the WI-type iterator functions in Section 6.4,
and as we have already discussed there, we aim to solve this issue in future
work by replacing the function causing the error by a data type. Some other

68

Chapter 7

areas of improvement we also aim to tackle in future work are using Cubical
libraries for an alternative equality type, using which we would be able to
prove UIP, as well as derive the WI-type and its eliminator from the W-type
and its eliminator, and not using pattern matching on WI-types but instead
using only the WI-type eliminator. These improvements will further reduce
our axioms and trusted code base, taking us closer to our long-term goal.

Alongside the improvements to our existing constructions, a possible direc-
tion for future work is the generalisation of our work to more general in-
ductive types, such as inductive families and inductive-inductive types. We
already know from Altenkirch and Morris (2009) and Altenkirch et al. (2015)
that inductive families are reducible to WI-types and hence to W-types, so
this reduction in Agda should be possible. As for inductive-inductive types,
some work has been done showing a reduction which supports simpler ver-
sions or specific inductive-inductive type examples (Forsberg, 2014; Hugunin,
2019), so this would be more challenging. Another class of types to consider
are nested inductive types, which we have only briefly mentioned in this
dissertation, but to which we could also extend our constructions.

69

Bibliography

Abbott, M., Altenkirch, T., and Ghani, N. (2003). Categories of contain-
ers. In Proceedings of Foundations of Software Science and Computation
Structures.

Abbott, M., Altenkirch, T., and Ghani, N. (2005). Containers: Construct-
ing strictly positive types. Theoretical Computer Science, 342(1):3–27.
Applied Semantics: Selected Topics.

Abbott, M. G. (2003). Categories of containers. PhD thesis, University of
Leicester, England, UK.

Altenkirch, T., Ghani, N., Hancock, P., McBride, C., and Morris, P. (2015).
Indexed containers. Journal of Functional Programming, 25:e5.

Altenkirch, T. and Morris, P. (2009). Indexed containers. In Proceedings -
Symposium on Logic in Computer Science, pages 277–285.

Awodey, S., Gambino, N., and Sojakova, K. (2012). Inductive types in ho-
motopy type theory. In 2012 27th Annual IEEE Symposium on Logic in
Computer Science, pages 95–104. IEEE.

Church, A. (1940). A Formulation of the Simple Theory of Types. The
Journal of Symbolic Logic, 5(2):56–68.

Dybjer, P. (1994). Inductive families. Formal Aspects of Computing, 6:440–
465.

Dybjer, P. (1997). Representing inductively defined sets by wellorderings in
Martin-Löf’s type theory. Theoretical Computer Science, 176(1):329–335.

Dybjer, P. (2018). An Introduction to Programming and Proving in
Agda (incomplete draft). http://www.cse.chalmers.se/~peterd/papers/

AgdaLectureNotes2018.pdf [Accessed: 20-08-2020].

Dybjer, P., Lindström, S., Palmgren, E., and Sundholm, G. (2012). Epis-

70

http://www.cse.chalmers.se/~peterd/papers/AgdaLectureNotes2018.pdf
http://www.cse.chalmers.se/~peterd/papers/AgdaLectureNotes2018.pdf

temology versus ontology. Essays on the philosophy and foundations of
mathematics in honour of Per Martin-Löf. Based on the conference, “Phi-
losophy and foundations of mathematics: Epistemological and ontological
aspects”, Uppsala, Sweden, May 5–8, 2009.

Forsberg, F. N. (2014). Inductive-inductive definitions.

Gambino, N. and Hyland, M. (2003). Wellfounded trees and dependent
polynomial functors. volume 3085.

Hofmann, M. (1996). Conservativity of equality reflection over intensional
type theory. In Berardi, S. and Coppo, M., editors, Types for Proofs and
Programs, pages 153–164, Berlin, Heidelberg. Springer Berlin Heidelberg.

Howard, W. (1980). The Formulae-as-Types Notion of Construction.

Hugunin, J. (2019). Constructing inductive-inductive types in cubical type
theory. In Bojańczyk, M. and Simpson, A., editors, Foundations of Soft-
ware Science and Computation Structures, pages 295–312, Cham. Springer
International Publishing.

Kaposi, A., Kovács, A., and Altenkirch, T. (2019). Constructing quotient
inductive-inductive types. Proc. ACM Program. Lang., 3(POPL).

Martin-Löf, P. (1971). Hauptsatz for the intuitionistic theory of iterated
inductive definitions. In Studies in Logic and the Foundations of Mathe-
matics, volume 63, pages 179–216. Elsevier.

Martin-Löf, P. (1972). An intuitionistic theory of types. Twenty-Five Years
of Constructive Type Theory.

Martin-Löf, P. (1982). Constructive mathematics and computer program-
ming. In Studies in Logic and the Foundations of Mathematics, volume
104, pages 153–175. Elsevier.

Martin-Löf, P. and Sambin, G. (1984). Intuitionistic type theory, volume 9.
Bibliopolis Naples.

Milewski, B. (2018). Category Theory for Programmers. Blurb, Incorporated.

Norell, U. and Chapman, J. (2009). Dependently typed programming in
Agda. In Advanced Functional Programming, volume 5832 of LNCS, pages
230–266. Springer.

Russell, B. (1903). Principles of Mathematics. University Press, Cambridge.
Appendix B: The Doctrine of Types.

The Agda Team (2020). Agda’s documentation. https://agda.readthedocs.
io/en/v2.6.1/ [Accessed: 20-08-2020].

The Univalent Foundations Program (2013). Homotopy Type Theory: Univa-
lent Foundations of Mathematics. https://homotopytypetheory.org/book,
Institute for Advanced Study.

Troelstra, A. (1991). History of constructivism in the twentieth century.

Wadler, P., Kokke, W., and Siek, J. G. (2020). Programming Language
Foundations in Agda. Available at http://plfa.inf.ed.ac.uk/20.07/.

https://agda.readthedocs.io/en/v2.6.1/
https://agda.readthedocs.io/en/v2.6.1/
https://homotopytypetheory.org/book
http://plfa.inf.ed.ac.uk/20.07/

Index

F -algebra, 18
algebra, 30

Π-type, 10
Σ-type, 10

category, 16
Curry–Howard correspondence, 6

definitional equality, 5
dependent type, 8

eliminator, 13

function type, 9
functional extensionality, 47
functor, 17

implicit arguments, 15
inductive type, 12
initial algebra, 18, 38
initial object, 17

weakly initial object, 43
iterator, 13, 42

morphism, 34
mutual inductive type, 12

product type, 10
proposition, 6
propositional equality, 6
propositions–as–types, 6

record type, 15

strict positivity, 13
sum type, 10

terminal object, 17
theorem, 6
type theory, 4

UIP, 52
universe, 9

W-type, 14
indexed W-type, 14, 53

73

	Introduction
	Aim and Motivation
	Overview of the Dissertation
	Contributions

	Background
	What is Type Theory?
	Type Theory vs. Set Theory
	Propositions as Types
	Dependent Types
	Martin-Löf Type Theory Constructs
	Inductive Types
	W-Types

	Agda
	Category Theory Background

	Literature Review
	The Theory of Signatures
	Suite of Examples
	Signatures
	Example Signatures

	Constructions on Signatures
	Algebras
	Morphisms
	The Initial Algebra
	The Iterator
	Uniqueness of the Iterator

	Constructing WI-types
	WI-Types Introduction and Examples
	The Carriers
	The Constructors
	The Iterator

	Conclusion and Future Work

