{-# OPTIONS --cubical #-}

open import ContainersPlus
open import DirectedContainer as DC
open DC.DirectedContainer
open import MndContainer as MC
open MC.MndContainer

open import Level
open import Function
open import Data.Product using (uncurry)
open import Cubical.Foundations.Prelude hiding (_▷_)

-- Distributive law direction: Aₘ ∘ Bₘ → Bₘ ∘ Aₘ
record DirectedMndDistributiveLaw (ℓs ℓp : Level)
                               (S : Set ℓs) (P : S  Set ℓp) (T : Set ℓs) (Q : T  Set ℓp)
                               (Aₘ : MndContainer _ _ (S  P)) (Bₘ : DirectedContainer _ _ (T  Q)) :
                               Set (suc (ℓs  ℓp)) where

  _⊕ᵇ_ = _⊕_ Bₘ
  _↓ᵇ_ = _↓_ Bₘ
  
  field
    u₁ : (s : S) (f : P s  T)  T
    u₂ : (s : S) (f : P s  T)  Q (u₁ s f)  S

    v₁ : {s : S} {f : P s  T} (q : Q (u₁ s f))  P (u₂ s f q)  P s
    v₂ : {s : S} {f : P s  T} (q : Q (u₁ s f)) (p : P (u₂ s f q))  Q (f (v₁ q p))

    unit-ιA-shape₁ : (t : T)  u₁ (ι Aₘ) (const t)  t
    unit-ιA-shape₂ : (t : T)  
                     PathP  i  (q : Q (unit-ιA-shape₁ t i))  S)
                           (u₂ (ι Aₘ) (const t)) 
                           (const (ι Aₘ))

    unit-ιA-pos₁ : (t : T) 
                   PathP  i  (q : Q (unit-ιA-shape₁ t i))  P (unit-ιA-shape₂ t i q)  P (ι Aₘ))
                         v₁
                          q p  p)
                   
    unit-ιA-pos₂ : (t : T) 
                   PathP  i  (q : Q (unit-ιA-shape₁ t i))  P (unit-ιA-shape₂ t i q)  Q t)
                         v₂
                          q p  q)

    mul-A-shape₁ : (s : S) (f : P s  S) (g : (p : P s)  P (f p)  T) 
                   u₁ (σ Aₘ s f) (uncurry g  (pr Aₘ _ _)) 
                   u₁ s (uncurry u₁  [ P , _ , _ ]⟨ f , g ⟩')
    
    mul-A-shape₂ : (s : S) (f : P s  S) (g : (p : P s)  P (f p)  T) 
                   PathP  i  Q (mul-A-shape₁ s f g i)  S)
                          q  (u₂ (σ Aₘ s f) (uncurry g  pr Aₘ _ _)) q)
                          q  uncurry (σ Aₘ) ([ Q , P , _ ]⟨ u₂ s (uncurry u₁  [ P , _ , _ ]⟨ f , g ⟩') ,
                                                                q p  (uncurry u₂  [ P , _ , _ ]⟨ f , g ⟩') (v₁ q p) (v₂ q p)) ⟩' q))

    mul-A-pos₁ : (s : S) (f : P s  S) (g : (p : P s)  P (f p)  T) 
                 PathP  i  (q : Q (mul-A-shape₁ s f g i))  P (mul-A-shape₂ s f g i q)  P s)
                        q p  pr₁ Aₘ s _ (v₁ q p))
                        q p  v₁ q (pr₁ Aₘ _ _ p))

    mul-A-pos₂₁ : (s : S) (f : P s  S) (g : (p : P s)  P (f p)  T) 
                  PathP  i  (q : Q (mul-A-shape₁ s f g i)) (p : P (mul-A-shape₂ s f g i q))  P (f (mul-A-pos₁ s f g i q p)))
                         q p  pr₂ Aₘ _ _ (v₁ q p))
                         q p  v₁ (v₂ q (pr₁ Aₘ _ _ p)) (pr₂ Aₘ _ _ p))     

    mul-A-pos₂₂ : (s : S) (f : P s  S) (g : (p : P s)  P (f p)  T) 
                  PathP  i  (q : Q (mul-A-shape₁ s f g i)) (p : P (mul-A-shape₂ s f g i q))  Q (g (mul-A-pos₁ s f g i q p) (mul-A-pos₂₁ s f g i q p)))
                         q p  v₂ q p) 
                         q p  v₂ (v₂ q (pr₁ Aₘ _ _ p)) (pr₂ Aₘ _ _ p))  

    unit-oB-shape : (s : S) (f : P s  T)  u₂ s f (o Bₘ _)  s
    unit-oB-pos₁ : (s : S) (f : P s  T) (p : P (u₂ s f (o Bₘ _)))  
                   PathP  i  P (unit-oB-shape s f (~ i))) 
                   (v₁ (o Bₘ _) p)
                   p
    unit-oB-pos₂ : (s : S) (f : P s  T) (p : P (u₂ s f (o Bₘ _)))  v₂ (o Bₘ _) p  o Bₘ _

    mul-B-shape₁ : (s : S) (f : P s  T) (q : Q (u₁ s f))  u₁ s f ↓ᵇ q  u₁ (u₂ s f q)  p  f (v₁ q p) ↓ᵇ v₂ q p)

    mul-B-shape₂ : (s : S) (f : P s  T) (q : Q (u₁ s f))  
                   PathP  i  (q' : Q (mul-B-shape₁ s f q i))  S)
                          q'  u₂ s f (q ⊕ᵇ q'))
                          q'  u₂ (u₂ s f q)  p  f (v₁ q p) ↓ᵇ v₂ q p) q')

    mul-B-pos₁ : (s : S) (f : P s  T) (q : Q (u₁ s f)) 
                 PathP  i  (q' : Q (mul-B-shape₁ s f q i)) (p : P (mul-B-shape₂ s f q i q'))  P s) 
                        q' p  v₁ (q ⊕ᵇ q') p)
                        q' p  v₁ q (v₁ q' p))
    mul-B-pos₂ : (s : S) (f : P s  T) (q : Q (u₁ s f))  
                 PathP  i  (q' : Q (mul-B-shape₁ s f q i)) (p : P (mul-B-shape₂ s f q i q'))  Q (f (mul-B-pos₁ s f q i q' p))) 
                        q' p  v₂ (q ⊕ᵇ q') p) 
                        q' p  v₂ q (v₁ q' p) ⊕ᵇ (v₂ q' p))